cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A081982 Primes p such that p+1 is divisible by the digital product (of nonzero digits) of p.

Original entry on oeis.org

11, 23, 101, 113, 131, 167, 211, 233, 311, 431, 863, 1013, 1021, 1031, 1061, 1103, 1201, 1217, 1223, 1259, 1301, 1601, 1619, 1637, 1721, 1823, 2003, 2011, 2111, 2687, 3011, 3023, 3203, 4111, 4703, 6011, 6047, 6101, 6173, 6263, 6911, 7013
Offset: 1

Views

Author

Amarnath Murthy, Apr 04 2003

Keywords

Comments

Contains A020449 and A107612 (except 2). - Robert Israel, Nov 09 2017

Examples

			167 is a term as 168 is divisible by 1*6*7 = 42.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n)
    isprime(n) and
    n+1 mod convert(subs(0=NULL,convert(n,base,10)),`*`) = 0
    end proc:
    select(filter, [seq(i,i=3..10000,2)]); # Robert Israel, Nov 09 2017
  • PARI
    isok(p) = isprime(p) && (d=digits(p)) && !((p+1) % prod(k=1, #d, if (d[k], d[k], 1))); \\ Michel Marcus, Nov 09 2017

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 06 2003

A107611 Indices of primes with digit product = 2.

Original entry on oeis.org

1, 47, 318, 10546, 10552, 10629, 86544, 56196114, 56200915, 56676030, 4555804158, 4559732893, 77220966866, 2907021742443997, 2907021767925176, 2907024290266584, 2932496986613869, 51280189662853652, 2461813897281353935, 23422580231698333926, 23422580438055032295
Offset: 1

Views

Author

Zak Seidov, May 17 2005

Keywords

Comments

Next term is A000720(111111111111112111) > A000720(10^17) > 2*10^15.

Crossrefs

Corresponding primes in A107612.

Programs

  • Mathematica
    Do[If[Apply[Times, IntegerDigits[Prime[n]]]==2, Print[n]], {n, 100000}]

Formula

a(n) = A000720(A107612(n)). - David Wasserman, May 07 2008

Extensions

More terms from Ryan Propper, Jan 03 2008
a(14)-a(21) calculated using Kim Walisch's primecount and added by Amiram Eldar, Sep 03 2024

A199980 Primes whose multiplicative digital root is 2.

Original entry on oeis.org

2, 37, 43, 73, 137, 173, 211, 223, 317, 367, 389, 431, 673, 827, 839, 929, 983, 1223, 1279, 1297, 1367, 1447, 1621, 1637, 1693, 1999, 2111, 2161, 2179, 2213, 2269, 2339, 2393, 2663, 2699, 2719, 2791, 2917, 2969, 2971, 3167, 3169, 3221, 3329, 3463, 3499, 3617
Offset: 1

Views

Author

Jaroslav Krizek, Nov 13 2011

Keywords

Comments

Complement of A199981 with respect to A034049, numbers whose multiplicative digital root is 2.

Examples

			Prime 389 is in sequence because 3*8*9=216, 2*1*6 =12, 1*2=2.
		

Crossrefs

Cf. A199981 (nonprime numbers whose multiplicative digital root is 2).
Includes A107612.

Programs

  • Maple
    mdr:= proc(n) option remember;
      local t;
      t:= convert(convert(n,base,10),`*`);
      if t < 10  then t else procname(t) fi
    end proc:
    select(t -> mdr(t) = 2 and isprime(t), [2, seq(i,i=3..10000,2)]); # Robert Israel, Nov 05 2020
  • Mathematica
    t = {}; n = 0; While[Length[t] < 100, n = NextPrime[n]; s = n; While[s >= 10, s = Times @@ IntegerDigits[s]]; If[s == 2, AppendTo[t, n]]]; t (* T. D. Noe, Nov 15 2011 *)
    Select[Prime[Range[600]],FixedPoint[Times@@IntegerDigits[#]&,#]==2&] (* Harvey P. Dale, Mar 28 2012 *)

A135048 Indices of primes with digit product = 3.

Original entry on oeis.org

2, 6, 11, 30, 32, 64, 1346, 1349, 1367, 10715, 12253, 26886, 733412, 733420, 733533, 734596, 6363182, 6363183, 6363289, 7437658, 503193257, 503193259, 503279746, 504057767, 1346029458, 4555878955, 12238593622, 1035905650780, 309353882444942, 2907021742443975
Offset: 1

Views

Author

Zak Seidov, Feb 11 2008

Keywords

Comments

The corresponding primes are in A107689.

Crossrefs

Formula

a(n) = primepi(A107689(n)).

Extensions

a(26)-a(30) from Amiram Eldar, Sep 06 2024

A201015 Composite numbers whose product of digits is 2.

Original entry on oeis.org

12, 21, 112, 121, 1112, 1121, 1211, 11112, 11121, 11211, 12111, 21111, 111112, 121111, 211111, 1111112, 1111121, 1112111, 1121111, 1211111, 2111111, 11111112, 11111121, 11111211, 11112111, 11121111, 11211111, 12111111, 21111111, 111111112, 111111121, 111111211
Offset: 1

Views

Author

Jaroslav Krizek, Nov 25 2011

Keywords

Comments

Complement of A107612 with respect to A199986. Subsequence of A199981 (composite numbers whose multiplicative digital root is 2).

Examples

			Number 121 is in sequence because 1*2*1 = 2, and 121 = 11*11 is composite.
		

Crossrefs

Cf. A107612 (primes whose product of digits is 2), A199986 (numbers whose product of digits is 2).

Programs

  • Mathematica
    Select[Sort[Flatten[Table[FromDigits/@Permutations[PadRight[{2},n,1]],{n,2,9}]]],CompositeQ] (* Harvey P. Dale, Oct 06 2024 *)
  • Python
    from sympy import isprime
    def agen(maxdigits):
        for digs in range(1, maxdigits+1):
            for i in range(digs):
                t = int("1"*(digs-1-i) + "2" + "1"*i)
                if not isprime(t): yield t
    print(list(agen(9))) # Michael S. Branicky, Dec 21 2021
Previous Showing 11-15 of 15 results.