cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 36 results. Next

A208329 Triangle of coefficients of polynomials v(n,x) jointly generated with A208328; see the Formula section.

Original entry on oeis.org

1, 0, 3, 0, 2, 5, 0, 2, 4, 11, 0, 2, 4, 14, 21, 0, 2, 4, 18, 32, 43, 0, 2, 4, 22, 44, 82, 85, 0, 2, 4, 26, 56, 130, 188, 171, 0, 2, 4, 30, 68, 186, 324, 438, 341, 0, 2, 4, 34, 80, 250, 492, 834, 984, 683, 0, 2, 4, 38, 92, 322, 692, 1374, 2028, 2202, 1365, 0, 2, 4, 42
Offset: 1

Views

Author

Clark Kimberling, Feb 26 2012

Keywords

Comments

Row sums, u(n,1): A000129
Row sums, v(n,1): A001333
As triangle T(n,k) with 0 <= k <= n, it is (0, 2/3, 1/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (3, -4/3, -2/3, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 27 2012

Examples

			First five rows:
  1;
  0,  3;
  0,  2,  5;
  0,  2,  4, 11;
  0,  2,  4, 14, 21;
First five polynomials u(n,x):
  1
     3x
     2x + 5x^2
     2x + 4x^2 + 11x^3
     2x + 4x^2 + 14x^3 + 21x^4.
		

Crossrefs

Cf. A208328.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 13;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := 2 x*u[n - 1, x] + x*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A208328 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A208329 *)

Formula

u(n,x) = u(n-1,x) + x*v(n-1,x),
v(n,x) = 2x*u(n-1,x) + x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Feb 27 2012: (Start)
As triangle T(n,k), 0 <= k <= n:
T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) + 2*T(n-2,k-2) with T(0,0) = 1, T(1,0) = 0, T(1,1) = 3 and T(n,k) = 0 if k < 0 or if k > n.
G.f.: (1-(1-2*y)*x)/(1-(1+y)*x+y*(1-2*y)*x^2).
Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A108411(n+1), A000007(n), A001333(n+1) for x = -1, 0, 1 respectively. (End)

A162558 a(n) = ((3+sqrt(3))*(5+sqrt(3))^n + (3-sqrt(3))*(5-sqrt(3))^n)/6.

Original entry on oeis.org

1, 6, 38, 248, 1644, 10984, 73672, 495072, 3329936, 22407776, 150819168, 1015220608, 6834184384, 46006990464, 309717848192, 2085024691712, 14036454256896, 94493999351296, 636137999861248, 4282512012883968
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jul 06 2009

Keywords

Comments

Fifth binomial transform of A108411. Binomial transform of A162557. Inverse binomial transform of A162757.
2nd binomial transform of A086405. - R. J. Mathar, Jul 17 2009

Crossrefs

Cf. A108411 (powers of 3 repeated), A162557, A162757.

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-3); S:=[ ((3+r)*(5+r)^n+(3-r)*(5-r)^n)/6: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 13 2009

Formula

a(n) = 10*a(n-1) - 22*a(n-2) for n > 1; a(0) = 1, a(1) = 6.
G.f.: (1-4*x)/(1-10*x+22*x^2).
From R. J. Mathar, Jul 17 2009: (Start)
a(n) = 10*a(n-2) - 22*a(n-2).
G.f.: (1-4*x)/(1-10*x+22*x^2). (End)

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Jul 13 2009
More terms from R. J. Mathar, Jul 17 2009

A162757 a(n) = 12*a(n-1)-33*a(n-2) for n > 1; a(0) = 1, a(1) = 7.

Original entry on oeis.org

1, 7, 51, 381, 2889, 22095, 169803, 1308501, 10098513, 78001623, 602768547, 4659169005, 36018666009, 278471414943, 2153041001019, 16646935319109, 128712870795681, 995205584017575, 7694942271953427, 59497522990861149
Offset: 0

Views

Author

Klaus Brockhaus, Jul 13 2009

Keywords

Comments

Sixth binomial transform of A108411. Binomial transform of A162558. Inverse binomial transform of A162758.

Crossrefs

Cf. A108411 (powers of 3 repeated), A162558, A162758.

Programs

  • Magma
    [ n le 2 select 6*n-5 else 12*Self(n-1)-33*Self(n-2): n in [1..20] ];

Formula

a(n) = ((3+sqrt(3))*(6+sqrt(3))^n+(3-sqrt(3))*(6-sqrt(3))^n)/6.
G.f.: (1-5*x)/(1-12*x+33*x^2).

A162758 a(n) = 14*a(n-1)-46*a(n-2) for n > 1; a(0) = 1, a(1) = 8.

Original entry on oeis.org

1, 8, 66, 556, 4748, 40896, 354136, 3076688, 26783376, 233439616, 2036119328, 17767448256, 155082786496, 1353856391168, 11820181297536, 103205144171776, 901143678718208, 7868574870153216, 68707438961107456, 599949701428456448
Offset: 0

Views

Author

Klaus Brockhaus, Jul 13 2009

Keywords

Comments

Seventh binomial transform of A108411. Binomial transform of A162757. Inverse binomial transform of A162759.

Crossrefs

Cf. A108411 (powers of 3 repeated), A162757, A162759.

Programs

  • Magma
    [ n le 2 select 7*n-6 else 14*Self(n-1)-46*Self(n-2): n in [1..20] ];
  • Mathematica
    LinearRecurrence[{14,-46},{1,8},30] (* Harvey P. Dale, Apr 09 2012 *)

Formula

a(n) = ((3+sqrt(3))*(7+sqrt(3))^n+(3-sqrt(3))*(7-sqrt(3))^n)/6.
G.f.: (1-6*x)/(1-14*x+46*x^2).

A188440 Triangle T(n,k) read by rows: number of size-k antisymmetric subsets of {1,2,...,n}.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 4, 4, 1, 4, 4, 1, 6, 12, 8, 1, 6, 12, 8, 1, 8, 24, 32, 16, 1, 8, 24, 32, 16, 1, 10, 40, 80, 80, 32, 1, 10, 40, 80, 80, 32, 1, 12, 60, 160, 240, 192, 64, 1, 12, 60, 160, 240, 192, 64, 1, 14, 84, 280, 560, 672, 448, 128, 1, 14, 84, 280
Offset: 0

Views

Author

Dennis P. Walsh, Mar 31 2011

Keywords

Comments

A subset S of {1,2,...,n} is antisymmetric if x is an element of S implies n+1-x is not an element of S. In other words, the sum of any two elements of S does not equal n+1. For example, {1,2,5} is an antisymmetric subset of {1,2,3,4,5,6,7}. If n is odd, (n+1)/2 cannot be an element of an antisymmetric subset of {1,2,...,n}. (Note that for n=0, we define {1,...,n} to be the empty set, and thus T(0,0)=1 since the empty set is vacuously antisymmetric.)
We note, for example, that T(100,k) provides the number of possible size-k committees of the U.S. Senate in which no two members are from the same state.
Triangle, read by rows, A013609 rows repeated. - Philippe Deléham, Apr 09 2012
Triangle, with zeros omitted, given by (1, 0, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Apr 09 2012

Examples

			Triangle T(n,k) initial values 0 <= k <= floor(n/2), n=0..13:
  1
  1
  1   2
  1   2
  1   4   4
  1   4   4
  1   6  12   8
  1   6  12   8
  1   8  24  32  16
  1   8  24  32  16
  1  10  40  80  80  32
  1  10  40  80  80  32
  1  12  60 160 240 192  64
  1  12  60 160 240 192  64
  ...
For n=7 and k=2, T(7,2)=12 since there are 12 antisymmetric size-2 subsets of {1,2,...,7}:
  {1,2}, {1,3}, {1,5}, {1,6}, {2,3}, {2,5},
  {2,7}, {3,6}, {3,7}, {5,6}, {5,7}, and {6,7}.
(1, 0, -1, 0, 0, 0, 0, ...) DELTA (0, 2, -2, 0, 0, 0, 0, ...) begins:
  1
  1   0
  1   2   0
  1   2   0   0
  1   4   4   0   0
  1   4   4   0   0   0
  1   6  12   8   0   0   0
  1   6  12   8   0   0   0   0
  1   8  24  32  16   0   0   0   0
  1   8  24  32  16   0   0   0   0   0
  1  10  40  80  80  32   0   0   0   0   0
  1  10  40  80  80  32   0   0   0   0   0   0
  1  12  60 160 240 192  64   0   0   0   0   0   0
  1  12  60 160 240 192  64   0   0   0   0   0   0   0
- _Philippe Deléham_, Apr 09 2012
		

Crossrefs

Cf. A108411, row sums of triangle T(n,k).

Programs

  • Maple
    seq(seq(binomial(floor(n/2),k)*2^k,k=0..floor(n/2)),n=0..22);
  • Mathematica
    Table[ CoefficientList[(1 + 2*x)^n, x] , {n, 0, 7}, {2}] // Flatten (* Jean-François Alcover, Aug 19 2013, after Philippe Deléham *)

Formula

T(n,k) = 2^k*C(floor(n/2),k) where C(*,*) denotes a binomial coefficient.
Sum(T(n,k),k=0..floor(n/2)) = 3^floor(n/2) = A108411(n).
G.f. for columns(k fixed):(2t^2)^k/((1-t)*(1-t^2)^k).
T(n,k) = A152198(n,k)*2^k. - Philippe Deléham, Apr 09 2012
G.f.: (1+x)/(1-x^2-2*y*x^2). - Philippe Deléham, Apr 09 2012
T(n,k) = T(n-2,k) + 2*T(n-2,k-1), T(0,0) = T(1,0) = 1, T(1,1) = 0 and T(n,k) = 0 if k<0 or if k>n.- Philippe Deléham, Apr 09 2012

A122007 Expansion of 2*x^2*(1-2*x) / ((3*x-1)*(3*x^2-1)).

Original entry on oeis.org

0, 2, 2, 12, 24, 90, 234, 756, 2160, 6642, 19602, 59292, 176904, 532170, 1593594, 4785156, 14346720, 43053282, 129133602, 387440172, 1162241784, 3486843450, 10460294154, 31381236756, 94143001680, 282430067922, 847288078002, 2541867422652, 7625595890664
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 11 2006

Keywords

References

  • "Linear Algebra, Examples and Applications" by Alain M. Robert, World Scientific, 2005, p. 58.

Programs

  • Mathematica
    M = {{0, 1, 2}, {1, 2, 0}, {2, 0, 1}} v[1] = {1, 0, 0} v[n_] := v[n] = M.v[n - 1] a1 = Table[v[n][[3]], {n, 1, 50}]
  • PARI
    concat(0, Vec(2*x^2*(1-2*x)/((3*x-1)*(3*x^2-1)) + O(x^40))) \\ Colin Barker, Sep 23 2016

Formula

Limit a(n+1)/a(n)= 3 as n-> infinity.
a(n)= 3*a(n-1) +3*a(n-2) -9*a(n-3) = 3^(n-2) + (-1)^n*A108411(n-2), n>=2.
From Colin Barker, Sep 23 2016: (Start)
a(n) = 3^(n/2-1)+3^(n-2) for n>1 and even.
a(n) = 3^(n-2)-3^((n-3)/2) for n>1 and odd.
(End)

Extensions

Definition replaced with generating function by the Assoc. Eds. of the OEIS, Mar 27 2010
A-number in formula corrected - R. J. Mathar, Mar 30 2010

A136201 a(n) = 2*a(n-1) + 4*a(n-2) - 6*a(n-3) - 3*a(n-4).

Original entry on oeis.org

0, 0, 0, 1, 2, 8, 18, 53, 124, 328, 780, 1969, 4718, 11648, 28014, 68405, 164824, 400240, 965304, 2337409, 5640122, 13637336, 32914794, 79525973, 191966740, 463636600, 1119239940, 2702647921, 6524535782, 15753313808, 38031163398
Offset: 0

Views

Author

Paul Curtz, Mar 16 2008

Keywords

Comments

Based on a Pell recurrence.

Programs

  • Maple
    a:=proc(n) options operator, arrow: expand((1/8)*(1+sqrt(2))^n+(1/8)*(1-sqrt(2))^n+(1/24)*3^((1/2)*n)*(-3-sqrt(3)-3*(-1)^n+(-1)^n*sqrt(3))) end proc: seq(a(n),n=0..30); # Emeric Deutsch, Mar 31 2008
  • Mathematica
    LinearRecurrence[{2, 4, -6, -3}, {0, 0, 0, 1}, 50] (* G. C. Greubel, Feb 23 2017 *)
    CoefficientList[Series[x^3/(1-2 x-4 x^2+6 x^3+3 x^4),{x,0,50}],x] (* Harvey P. Dale, Apr 21 2022 *)
  • PARI
    x='x+O('x^50); Vec(x^3/(3*x^4 + 6*x^3 - 4*x^2 - 2*x + 1)) \\ G. C. Greubel, Feb 23 2017

Formula

A137255(n+1) - 2*A137255(n), same recurrence.
a(n) = (-A108411(n) + A001333(n))/4. - R. J. Mathar, Apr 01 2008
a(n) = (1/8)*(1+sqrt(2))^n + (1/8)*(1-sqrt(2))^n + (1/24)*3^(n/2)*(-3 - sqrt(3) - 3(-1)^n + (-1)^n*sqrt(3)). - Emeric Deutsch, Mar 31 2008
G.f.: x^3/(3*x^4 + 6*x^3 - 4*x^2 - 2*x + 1). - Alexander R. Povolotsky, Mar 31 2008

A141516 The main diagonal of the array of A141425 and its higher order differences.

Original entry on oeis.org

1, 2, 1, -7, -23, -1, 7, -103, -251, -133, -149, -1387, -3143, -3001, -4913, -19663, -42611, -55693, -101549, -291667, -612863, -960001, -1831433, -4460023, -9185771, -15980053, -31162949, -69500347, -141392183, -261261001
Offset: 0

Views

Author

Paul Curtz, Aug 11 2008

Keywords

Comments

The sequence A141425 and higher order differences in subsequent rows starts (see A141533):
1, 2, 4, 5, 7, 8, 1, 2, 4, 5, 7, 8, 1, 2, 4,...
1, 2, 1, 2, 1,-7, 1, 2, 1, 2, 1,-7, 1, 2, 1, 2,...
1,-1, 1, -1, -8, 8, 1,-1, 1, -1, -8, 8, 1, -1,..
-2, 2,-2, -7, 16,-7,-2, 2,-2, -7, 16,-7, -2,..
4,-4,-5, 23,-23, 5, 4,-4,-5, 23,-23, 5, 4,..
-8,-1,28,-46, 28,-1,-8,-1,28,-46, 28,-1,..
Reading downwards the main diagonal of this array defines the sequence.

Programs

  • Maple
    A108411 := proc(n) 3^floor(n/2) ; end proc:
    A141516 := proc(n) if n = 0 then 1; else (-3*(-1)^n-2^n+3*(-1)^(floor((n-1)/2))*A108411(n))/2 ; end if; end proc: # R. J. Mathar, Mar 08 2011
  • Mathematica
    LinearRecurrence[{1,-1,3,6},{1,2,1,-7,-23},30] (* Harvey P. Dale, Nov 23 2022 *)

Formula

a(n) = ( -3*(-1)^n -2^n +3*(-1)^(floor((n-1)/2))*A108411(n) )/2, n>0. - R. J. Mathar, Mar 08 2011
a(2n)+a(2n+1)= -A002023(n-1) = -3*A081294(n), n>0.
a(4n)+a(4n+1)+a(4n+2)+a(4n+3) = -120*16^(n-1), n>0.
a(4n+2)+a(4n+3)+a(4n+4)+a(4n+5) = -30*A001025(n).
G.f. x*(-2+x+6*x^2+21*x^3) / ( (2*x-1)*(1+x)*(3*x^2+1) ). - R. J. Mathar, Mar 08 2011

A155084 A Catalan transform of [x^n](1/(1-2x-2x^2)) (A002605).

Original entry on oeis.org

1, 2, 8, 32, 132, 552, 2328, 9872, 42020, 179336, 766888, 3284272, 14081224, 60426576, 259490736, 1114965792, 4792924356, 20611174920, 88662405768, 381494338032, 1641837542232, 7067257125744, 30425523536592
Offset: 0

Views

Author

Paul Barry, Jan 19 2009

Keywords

Comments

Hankel transform is 4^n.

Crossrefs

Formula

G.f.: 1/(1-2x*c(x)-2(x*c(x))^2), where c(x) is the g.f. of A000108.
G.f.: 1/(1-2x-4x^2/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-..... (continued fraction).
a(n) = Sum_{k=0..n} (k/(2n-k))*binomial(2n-k, n-k)*A002605(k), a(0) = 1.
a(n) = Sum_{0<=k<=n} A039599(n,k)*A108411(k). [Philippe Deléham, Nov 15 2009]
Apparently 3*n*a(n) +6*(3-4*n)*a(n-1) +4*(11*n-18)*a(n-2) +8*(2*n-3)*a(n-3)=0. - R. J. Mathar, Oct 25 2012

A162759 a(n) = 16*a(n-1)-61*a(n-2) for n > 1; a(0) = 1, a(1) = 9.

Original entry on oeis.org

1, 9, 83, 779, 7401, 70897, 682891, 6601539, 63968273, 620798489, 6030711171, 58622670907, 570089353081, 5545446723969, 53951697045563, 524954902566899, 5108224921291041, 49709349684075817, 483747874746459571
Offset: 0

Views

Author

Klaus Brockhaus, Jul 13 2009

Keywords

Comments

Eighth binomial transform of A108411. Binomial transform of A162758.

Crossrefs

Cf. A108411 (powers of 3 repeated), A162758.

Programs

  • Magma
    [ n le 2 select 8*n-7 else 16*Self(n-1)-61*Self(n-2): n in [1..19] ];
  • Mathematica
    LinearRecurrence[{16,-61},{1,9},30] (* Harvey P. Dale, Jan 18 2014 *)

Formula

a(n) = ((3+sqrt(3))*(8+sqrt(3))^n+(3-sqrt(3))*(8-sqrt(3))^n)/6.
G.f.: (1-7*x)/(1-16*x+61*x^2).
Previous Showing 21-30 of 36 results. Next