A379868
E.g.f. A(x) satisfies A(x) = exp(-x*A(x)^2) + x*A(x)^2.
Original entry on oeis.org
1, 0, 1, -1, 25, -101, 2281, -19895, 472305, -6760297, 177126121, -3578690435, 105341330953, -2743981145933, 91092111623241, -2888769295882111, 107832291781283809, -4009180998104138321, 167254334458983887689, -7105017992715364001147, 328862774630320838523321
Offset: 0
A379456
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x) / (1 + x*exp(x)) ).
Original entry on oeis.org
1, 2, 13, 151, 2573, 58221, 1648345, 56138461, 2236816825, 102135829609, 5259937376141, 301678137203433, 19072415186892325, 1317869007328182349, 98818139178323981473, 7991908824553634264101, 693473520767940388417265, 64266613784795934251538513
Offset: 0
A335945
E.g.f. A(x) satisfies A(x) = exp(x*A(x)/(1 + x)).
Original entry on oeis.org
1, 1, 1, 4, 17, 116, 907, 9010, 102097, 1348408, 19939571, 330204854, 6015657529, 120016789348, 2597201945899, 60667591974826, 1520434054966433, 40710815980598000, 1159627208850209251, 35018022339726428926, 1117395892399939407241, 37569709612314269554396
Offset: 0
-
nmax = 21; A[] = 0; Do[A[x] = Exp[x A[x]/(1 + x)] + O[x]^(nmax + 1) // Normal, nmax + 1];CoefficientList[A[x], x] Range[0, nmax]!
nmax = 21; CoefficientList[Series[-(1 + x) LambertW[-x/(1 + x)]/x, {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[(-1)^(n - k) Binomial[n - 1, k - 1] (k + 1)^(k - 1) n!/k!, {k, 0, n}], {n, 0, 21}]
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x/(1+x))))) \\ Seiichi Manyama, Mar 05 2023
A377373
Expansion of e.g.f. (1/x) * Series_Reversion( x / (exp(-x) + 2*x) ).
Original entry on oeis.org
1, 1, 3, 14, 93, 794, 8335, 103774, 1496313, 24525458, 450478131, 9166307798, 204692557333, 4977320639290, 130918278855351, 3703846153114574, 112155490349101041, 3619411771703973410, 124011196515200953819, 4496024219722304736070, 171963129575721708667341
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(lambertw(x/(1-2*x))/x))
-
a(n) = n!*sum(k=0, n, (-1)^k*2^(n-k)*(k+1)^(k-1)*binomial(n, k)/k!);
A377374
Expansion of e.g.f. (1/x) * Series_Reversion( x / (exp(-x) + 3*x) ).
Original entry on oeis.org
1, 2, 9, 65, 653, 8439, 133609, 2506727, 54408633, 1341637595, 37055451101, 1133391705819, 38034022035877, 1389484163236727, 54899323023464529, 2332723285215012479, 106076669681270501105, 5140202768545661266227, 264427503283923495485221, 14392750805365239040586051
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(lambertw(x/(1-3*x))/x))
-
a(n) = n!*sum(k=0, n, (-1)^k*3^(n-k)*(k+1)^(k-1)*binomial(n, k)/k!);
A379701
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(x) / (1 + x*exp(2*x)) ).
Original entry on oeis.org
1, 0, 3, 2, 113, 304, 13747, 83600, 3590337, 38193920, 1650383171, 26535997696, 1186785903217, 26244849422336, 1234578346302771, 35176362803984384, 1757110507998276353, 61533880908307038208, 3281634015502670522371, 136392534106346468999168
Offset: 0
A379702
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(x) / (1 + x*exp(3*x)) ).
Original entry on oeis.org
1, 0, 5, 11, 333, 2829, 78553, 1360197, 42149817, 1123709129, 40775629581, 1453036152897, 62005204699045, 2736440768515869, 135913168259011809, 7106229274104610829, 405068417020871464689, 24398077807975709138193, 1574189366334360310720405
Offset: 0
A379866
Expansion of e.g.f. (1/x) * Series_Reversion( x / (exp(-x) + x)^2 ).
Original entry on oeis.org
1, 0, 2, -2, 56, -222, 5332, -45782, 1127408, -15972542, 428055644, -8598013734, 256717806952, -6667767637598, 223389539254676, -7076616268104278, 265762684840216544, -9880557234248622462, 413902270494309471436, -17591536945041528005318, 816621849842712202724696
Offset: 0