cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 158 results. Next

A329614 Smallest prime factor of the number of divisors of A108951(n).

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 7, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2019

Keywords

Comments

Differs from A071187 for the first time at n=324, where a(324) = 5, while A071187(324) = 3. The positions of the differences are listed at A329613.

Examples

			324 = 18^2 = 2^2 * 3^4, thus A108951(324) = 2^2 * (2*3)^4 = 2^6 * 3^4 = 5184, which has (6+1)*(4+1) = 7 * 5 = 35 divisors, thus a(324) = A020639(35) = 5.
		

Crossrefs

Programs

  • Mathematica
    Array[FactorInteger[DivisorSigma[0, #]][[1, 1]] &@ Apply[Times, Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}]] &, 105] (* Michael De Vlieger, Nov 18 2019 *)
  • PARI
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
    A071187(n) = if(1==n, n, my(f = factor(numdiv(n))); vecmin(f[, 1]));
    A329614(n) = A071187(A108951(n));

Formula

a(n) = A071187(A108951(n)).
a(n) = A020639(A329605(n)).

A342920 a(n) = A342002(A108951(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 8, 12, 2, 1, 4, 1, 2, 6, 16, 1, 24, 1, 4, 6, 2, 1, 26, 50, 2, 16, 4, 1, 62, 1, 10, 6, 2, 126, 48, 1, 2, 6, 18, 1, 24, 1, 4, 46, 2, 1, 22, 1486, 100, 6, 4, 1, 32, 94, 8, 6, 2, 1, 54, 1, 2, 72, 20, 264, 12, 1, 4, 6, 120, 1, 376, 1, 2, 1142, 4, 242, 12, 1, 36, 342, 2, 1, 48, 272, 2, 6, 8, 1, 92, 318
Offset: 1

Views

Author

Antti Karttunen, Apr 06 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A342002(A108951(n)) = A327860(A108951(n)) / A328572(A108951(n)).

A346096 Numerator of the primorial deflation of A276086(A108951(n)): a(n) = A319626(A324886(n)).

Original entry on oeis.org

2, 3, 5, 9, 7, 25, 11, 5, 7, 49, 13, 625, 17, 121, 117649, 25, 19, 49, 23, 2401, 1771561, 169, 29, 175, 14641, 289, 55, 14641, 31, 26411, 37, 21, 4826809, 361, 299393809, 2401, 41, 529, 24137569, 11, 43, 13, 47, 28561, 161051, 841, 53, 343, 6311981, 214358881, 47045881, 83521, 59, 3025, 48841, 214358881, 148035889, 961
Offset: 1

Views

Author

Antti Karttunen, Jul 07 2021

Keywords

Comments

Numerator of ratio A324886(n) / A329044(n).

Crossrefs

Programs

Formula

a(n) = A319626(A324886(n)).
a(n) = A324886(n) / A346095(n) = A324886(n) / gcd(A324886(n), A329044(n)).
For n >= 1, A108951(A346096(n)) / A108951(A346097(n)) = A324886(n).
For n > 1, a(n) = A003961(A346098(n)).

A346097 Denominator of the primorial deflation of A276086(A108951(n)): a(n) = A319627(A324886(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 7, 2, 3, 25, 11, 81, 13, 49, 15625, 4, 17, 9, 19, 625, 117649, 121, 23, 27, 1225, 169, 21, 2401, 29, 3125, 31, 10, 1771561, 289, 5764801, 81, 37, 361, 4826809, 5, 41, 7, 43, 14641, 12005, 529, 47, 75, 1127357, 1500625, 24137569, 28561, 53, 441, 14641, 5764801, 47045881, 841, 59, 125, 61, 961, 343, 100, 302875106592253
Offset: 1

Views

Author

Antti Karttunen, Jul 07 2021

Keywords

Comments

Denominator of ratio A324886(n) / A329044(n).

Crossrefs

Cf. A346096 (numerators).
Cf. also A337377.

Programs

Formula

a(n) = A319627(A324886(n)).
a(n) = A329044(n) / A346095(n) = A329044(n) / gcd(A324886(n), A329044(n)).
A020639(a(n)) = A006530(n).
A108951(a(n)) = A346107(n).
A346105(a(n)) = A346109(n).

A337474 Number of prime shifts (x -> A003961(x)) needed before the result is deficient, when starting from x = A108951(n), the primorial inflation of n.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 2, 2, 2, 0, 2, 1, 2, 2, 2, 2, 3, 1, 2, 2, 1, 2, 3, 2, 3, 0, 2, 2, 2, 1, 3, 3, 2, 2, 3, 2, 3, 2, 2, 3, 3, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 3, 3, 2, 4, 3, 2, 0, 2, 2, 4, 2, 3, 2, 4, 1, 4, 3, 2, 3, 2, 2, 4, 2, 1, 3, 4, 2, 2, 3, 3, 2, 4, 2, 2, 3, 3, 3, 3, 1, 4, 2, 2, 2, 4, 2, 4, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Aug 28 2020

Keywords

Comments

a(n) is the least k for which A337473(k, n) = 1.

Crossrefs

Cf. A337476 (position of the first occurrence of each n), A337478.

Programs

  • PARI
    A337473sq(n, k) = if(1==k,k, my(f=factor(k), h = #f~, prevpid=primepi(f[h,1]), e=f[h,2], p, s=1); forstep(i=h-1,0,-1, if(!i,pid=0,pid=primepi(f[i,1])); forstep(j=prevpid,(1+pid),-1, p=prime(j+n); s *= ((p^(1+e)-1)/((p-1)*(p^e)))); if(!pid,return(floor(s))); prevpid = pid; e += f[i,2]); floor(s));
    A337474(n) = for(i=0,oo,if(1==A337473sq(i,n),return(i)));
    
  • PARI
    \\ This version uses binary search, which is faster in certain cases:
    isA337473sq1(n, k) = if(1==k,k, my(f=factor(k), h = #f~, prevpid=primepi(f[h,1]), e=f[h,2], p, s=1); forstep(i=h-1,0,-1, if(!i,pid=0,pid=primepi(f[i,1])); forstep(j=prevpid,(1+pid),-1, p=prime(j+n); s *= ((p^(1+e)-1)/((p-1)*(p^e)))); if(!pid,return(s<2)); prevpid = pid; e += f[i,2]); (s<2));
    A337474(n) = if(!bitand(n,n-1),0,my(imin=0,imax=n,imid); for(i=0,oo, imid=(imax+imin)\2; if(1!=isA337473sq1(imid,n), imin = imid+1, if(1!=isA337473sq1(imid-1,n),return(imid), imax = imid-1))));

Formula

a(n) = A336835(A108951(n)).
a(A181815(n)) = A337475(n).
For all n >= 0, a(A337476(n)) = n.
For all n >= 0, a(A337478(n)) >= n.

A307035 a(n) is the unique integer k such that A108951(k) = n!.

Original entry on oeis.org

1, 1, 2, 3, 12, 20, 60, 84, 672, 1512, 5040, 7920, 47520, 56160, 157248, 393120, 6289920, 8225280, 37013760, 41368320, 275788800, 579156480, 1820206080, 2203407360, 26440888320, 73446912000, 173601792000, 585906048000, 3281073868800, 4137006182400, 20685030912000
Offset: 0

Views

Author

Allan C. Wechsler, Mar 20 2019

Keywords

Comments

For all n, n! = A108951(k) for some unique k. This sequence gives that k for each n. In some sense this sequence tells how to factor factorials into primorials.
Represent n! as a product of primorials p#. Then replace each primorial with its base prime to calculate a(n).

Examples

			Represent 7! as a product of primorials:
7! = 2^4 * 3^2 * 5 * 7 = (2#)^2 * 3# * 7#
Replace primorials by primes:
2^2 * 3 * 7 = 84.
So a(7) = 84.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember; `if`(n<2, 0, f(n-1)+add(
          i[2]*x^numtheory[pi](i[1]), i=ifactors(n)[2]))
        end:
    a:= proc(n) local d, p, r; p, r:= f(n), 1;
          do d:= degree(p); if d<1 then break fi;
             p, r:= p-add(x^i, i=1..d), ithprime(d)*r
          od: r
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Mar 21 2019
  • Mathematica
    q[n_] := Apply[Times, Table[Prime[i], {i, 1, PrimePi[n]}]]; Flatten[{1, 1, Table[val = 1; fak = n!; Do[If[PrimeQ[k], Do[If[Divisible[fak, q[k]], val = val*k; fak = fak/q[k]], {j, 1, n}]], {k, n, 2, -1}]; val, {n, 2, 30}]}] (* Vaclav Kotesovec, Mar 21 2019 *)
  • PARI
    g(n) = my(f=factor(n)); prod(k=1, #f~, my(p=f[k, 1]); (p/if(p>2, precprime(p-1), 1))^f[k, 2]); \\ A319626/A319627
    a(n) = prod(k=1, n, g(k)); \\ Daniel Suteu, Mar 21 2019
    
  • PARI
    A307035(n) = { my(m=1, pp=1); n=n!; while(1, forprime(p=2, ,if(n%p, if(2==p, return(m), break), n /= p; pp = p)); m *= pp); }; \\ Antti Karttunen, Dec 29 2019

Formula

a(0) = 1, a(n) = a(n-1) * (A319626(n) / A319627(n)), for n > 0. - Daniel Suteu, Mar 21 2019
a(n) = n! / Product_{k=1..n} A064989(k). - Vaclav Kotesovec, Mar 21 2019
a(n) = A122111(A325508(n)) = A319626(A000142(n)) = A329900(A000142(n)). - Antti Karttunen, Nov 19 & Dec 29 2019

Extensions

a(12)-a(13) from Michel Marcus, Mar 21 2019
a(14)-a(15) from Vaclav Kotesovec, Mar 21 2019
a(0), a(16)-a(30) from Alois P. Heinz, Mar 21 2019

A329600 Smallest number with the same set of distinct prime exponents as A108951(n).

Original entry on oeis.org

1, 2, 2, 4, 2, 12, 2, 8, 4, 12, 2, 24, 2, 12, 12, 16, 2, 72, 2, 24, 12, 12, 2, 48, 4, 12, 8, 24, 2, 360, 2, 32, 12, 12, 12, 144, 2, 12, 12, 48, 2, 360, 2, 24, 24, 12, 2, 96, 4, 72, 12, 24, 2, 432, 12, 48, 12, 12, 2, 720, 2, 12, 24, 64, 12, 360, 2, 24, 12, 360, 2, 288, 2, 12, 72, 24, 12, 360, 2, 96, 16, 12, 2, 720, 12, 12, 12, 48, 2, 2160, 12, 24, 12, 12, 12
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2019

Keywords

Crossrefs

Cf. A077462 (rgs-transform, from its term a(1)=1 onward).

Programs

  • Mathematica
    Array[Times @@ MapIndexed[Prime[#2[[1]]]^#1 &, Reverse[Flatten[Cases[FactorInteger[#], {p_, k_} :> Table[PrimePi[p], {k}]]]]] &[Times @@ FactorInteger[#][[All, 1]]] &@ If[# == 1, 1, Times @@ Prime@ FactorInteger[#][[All, -1]]] &[Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}]] &, 105] (* Michael De Vlieger, Nov 18 2019, after Gus Wiseman at A181821 *)
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
    A181821(n) = { my(f=factor(n),p=0,m=1); forstep(i=#f~,1,-1,while(f[i,2], f[i,2]--; m *= (p=nextprime(p+1))^primepi(f[i,1]))); (m); };
    A328400(n) = A181821(A007947(A181819(n)));
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
    A329600(n) = A328400(A108951(n));

Formula

A342012 Primorial deflation of the n-th colossally abundant number: the unique integer k such that A108951(k) = A004490(n).

Original entry on oeis.org

2, 3, 6, 10, 20, 30, 42, 84, 132, 156, 312, 468, 780, 1020, 1140, 1380, 2760, 3480, 3720, 5208, 7812, 9324, 10332, 10836, 21672, 23688, 26712, 29736, 49560, 51240, 56280, 59640, 61320, 96360, 104280, 208560, 219120, 328680, 352440, 384120, 453960, 472680, 482040, 500760, 510120, 528840, 594360, 613080, 641160, 650520, 1301040
Offset: 1

Views

Author

Antti Karttunen, Mar 08 2021

Keywords

Comments

In contrast to A329902, this sequence is monotonic, because each term is obtained from the previous, either by multiplying it by 2, or by "bumping" one [or hypothetically: two] of its prime factors one step up (i.e., replacing it with the next larger prime), and both operations are guaranteed to make the number larger.

Crossrefs

Programs

  • PARI
    v073751 = readvec("b073751_to.txt");
    A073751(n) = v073751[n];
    A004490list(v073751) = { my(v=vector(#v073751)); v[1] = 2; for(n=2,#v,v[n] = v073751[n]*v[n-1]); (v); };
    v004490 = A004490list(v073751);
    A004490(n) = v004490[n];
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A319626(n) = (n / gcd(n, A064989(n)));
    A342012(n) = A319626(A004490(n));

Formula

a(n) = A319626(A004490(n)) = A329900(A004490(n)).
a(n) = A005940(1+A342013(n)).

A346091 a(n) = A328571(A108951(n)).

Original entry on oeis.org

2, 3, 5, 3, 7, 5, 11, 15, 35, 7, 13, 5, 17, 11, 7, 15, 19, 35, 23, 7, 11, 13, 29, 35, 77, 17, 55, 11, 31, 77, 37, 21, 13, 19, 143, 35, 41, 23, 17, 77, 43, 143, 47, 13, 77, 29, 53, 35, 2431, 77, 19, 17, 59, 55, 221, 11, 23, 31, 61, 77, 67, 37, 143, 21, 323, 13, 71, 19, 29, 143, 73, 385, 79, 41, 1001, 23, 221, 17, 83, 77, 385
Offset: 1

Views

Author

Antti Karttunen, Jul 09 2021

Keywords

Comments

All terms are squarefree (in A005117). - Antti Karttunen, Apr 03 2022

Crossrefs

Programs

  • PARI
    A002110(n) = prod(i=1,n,prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A002110(primepi(f[i, 1]))^f[i, 2]) };
    A328571(n) = { my(m=1, p=2); while(n, m *= (p^!!(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A346091(n) = A328571(A108951(n));

Formula

a(n) = A324886(n) / A344592(n).
For all n >= 1, a(A000040(n)) = A000040(1+n).

A346108 a(n) = A276085(A108951(A346096(n))), where A346096(n) gives the numerator of the primorial deflation of A276086(A108951(n)).

Original entry on oeis.org

1, 3, 9, 6, 39, 18, 249, 9, 39, 78, 2559, 36, 32589, 498, 234, 18, 543099, 78, 10242789, 156, 1494, 5118, 233335659, 57, 996, 65178, 258, 996, 6703028889, 405, 207263519019, 42, 15354, 1086198, 6612, 156, 7628001653829, 20485578, 195534, 249, 311878265181039, 2559, 13394639596851069, 10236, 1245, 466671318, 628284422185342479
Offset: 1

Views

Author

Antti Karttunen, Jul 08 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A108951(n) + A346109(n).
Previous Showing 11-20 of 158 results. Next