cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 56 results. Next

A358726 Difference between the node-height and the number of leaves in the rooted tree with Matula-Goebel number n.

Original entry on oeis.org

0, 1, 2, 0, 3, 1, 1, -1, 1, 2, 4, 0, 2, 0, 2, -2, 2, 0, 0, 1, 0, 3, 2, -1, 2, 1, 0, -1, 3, 1, 5, -3, 3, 1, 1, -1, 1, -1, 1, 0, 3, -1, 1, 2, 1, 1, 3, -2, -1, 1, 1, 0, -1, -1, 3, -2, -1, 2, 3, 0, 1, 4, -1, -4, 1, 2, 1, 0, 1, 0, 2, -2, 1, 0, 1, -2, 2, 0, 4, -1
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2022

Keywords

Comments

Node-height is the number of nodes in the longest path from root to leaf.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The tree (oo(oo(o))) with Matula-Goebel number 148 has node-height 4 and 5 leaves, so a(148) = -1.
		

Crossrefs

Positions of first appearances are A007097 and latter terms of A000079.
Positions of 0's are A358577.
Other differences: A358580, A358724, A358729.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936.
A055277 counts rooted trees by nodes and leaves, ordered A001263.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[(Depth[MGTree[n]]-1)-Count[MGTree[n],{},{0,Infinity}],{n,1000}]

Formula

a(n) = A358552(n) - A109129(n).

A324928 Matula-Goebel numbers of rooted trees of depth 3.

Original entry on oeis.org

5, 10, 13, 15, 17, 20, 23, 25, 26, 30, 34, 35, 37, 39, 40, 43, 45, 46, 50, 51, 52, 60, 61, 65, 67, 68, 69, 70, 73, 74, 75, 78, 80, 85, 86, 89, 90, 91, 92, 95, 100, 102, 103, 104, 105, 107, 111, 115, 117, 119, 120, 122, 125, 129, 130, 134, 135, 136, 138, 140
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2019

Keywords

Comments

Numbers n such that A109082(n) = 3.

Examples

			The sequence of all rooted trees of depth 3 together with their Matula-Goebel numbers begins:
   5: (((o)))
  10: (o((o)))
  13: ((o(o)))
  15: ((o)((o)))
  17: (((oo)))
  20: (oo((o)))
  23: (((o)(o)))
  25: (((o))((o)))
  26: (o(o(o)))
  30: (o(o)((o)))
  34: (o((oo)))
  35: (((o))(oo))
  37: ((oo(o)))
  39: ((o)(o(o)))
  40: (ooo((o)))
  43: ((o(oo)))
  45: ((o)(o)((o)))
  46: (o((o)(o)))
  50: (o((o))((o)))
  51: ((o)((oo)))
  52: (oo(o(o)))
  60: (oo(o)((o)))
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Length[NestWhileList[Times@@PrimePi/@FactorInteger[#][[All,1]]&,#,#>1&]]-1==3&]

A325543 Width (number of leaves) of the rooted tree with Matula-Goebel number n!.

Original entry on oeis.org

1, 1, 1, 2, 4, 5, 7, 9, 12, 14, 16, 17, 20, 22, 25, 27, 31, 33, 36, 39, 42, 45, 47, 49, 53, 55, 58, 61, 65, 67, 70, 71, 76, 78, 81, 84, 88, 91, 95, 98, 102, 104, 108, 111, 114, 117, 120, 122, 127, 131, 134, 137, 141, 145, 149, 151, 156, 160, 163, 165, 169, 172
Offset: 0

Views

Author

Gus Wiseman, May 09 2019

Keywords

Comments

Also the multiplicity of q(1) in the factorization of n! into factors q(i) = prime(i)/i. For example, the factorization of 7! is q(1)^9 * q(2)^3 * q(3) * q(4), so a(7) = 9.

Examples

			Matula-Goebel trees of the first 9 factorial numbers are:
  0!: o
  1!: o
  2!: (o)
  3!: (o(o))
  4!: (ooo(o))
  5!: (ooo(o)((o)))
  6!: (oooo(o)(o)((o)))
  7!: (oooo(o)(o)((o))(oo))
  8!: (ooooooo(o)(o)((o))(oo))
The number of leaves is the number of o's, which are (1, 1, 1, 2, 4, 5, 7, 9, 12, ...), as required.
		

Crossrefs

Programs

  • Mathematica
    mglv[n_]:=If[n==1,1,Total[Cases[FactorInteger[n],{p_,k_}:>mglv[PrimePi[p]]*k]]];
    Table[mglv[n!],{n,0,100}]

Formula

For n > 1, a(n) = - 1 + Sum_{k = 1..n} A109129(k).

A358725 Matula-Goebel numbers of rooted trees with a greater number of internal (non-leaf) vertices than edge-height.

Original entry on oeis.org

9, 15, 18, 21, 23, 25, 27, 30, 33, 35, 36, 39, 42, 45, 46, 47, 49, 50, 51, 54, 55, 57, 60, 61, 63, 65, 66, 69, 70, 72, 73, 75, 77, 78, 81, 83, 84, 85, 87, 90, 91, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 105, 108, 110, 111, 113, 114, 115, 117, 119, 120, 121
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2022

Keywords

Comments

Edge-height (A109082) is the number of edges in the longest path from root to leaf.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The terms together with their corresponding trees begin:
   9: ((o)(o))
  15: ((o)((o)))
  18: (o(o)(o))
  21: ((o)(oo))
  23: (((o)(o)))
  25: (((o))((o)))
  27: ((o)(o)(o))
  30: (o(o)((o)))
  33: ((o)(((o))))
  35: (((o))(oo))
  36: (oo(o)(o))
  39: ((o)(o(o)))
  42: (o(o)(oo))
  45: ((o)(o)((o)))
  46: (o((o)(o)))
  47: (((o)((o))))
  49: ((oo)(oo))
  50: (o((o))((o)))
		

Crossrefs

Complement of A209638 (the case of equality).
These trees are counted by A316321.
Positions of positive terms in A358724.
The case of equality for node-height is A358576.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936
A055277 counts rooted trees by nodes and leaves, ordered A001263.
Differences: A358580, A358724, A358726, A358729.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Count[MGTree[#],[_],{0,Infinity}]>Depth[MGTree[#]]-2&]

Formula

A342507(a(n)) > A109082(a(n)).

A358730 Positions of first appearances in A358729 (number of nodes minus node-height).

Original entry on oeis.org

1, 4, 8, 16, 27, 54, 81, 162, 243, 486, 729, 1458, 2187, 4374, 6561, 13122, 19683, 39366, 59049
Offset: 1

Views

Author

Gus Wiseman, Dec 01 2022

Keywords

Comments

First differs from A334198 in having 13122 instead of 12005.
Node-height is the number of nodes in the longest path from root to leaf.
After initial terms, this appears to become A038754.

Examples

			The terms together with their corresponding rooted trees begin:
      1: o
      4: (oo)
      8: (ooo)
     16: (oooo)
     27: ((o)(o)(o))
     54: (o(o)(o)(o))
     81: ((o)(o)(o)(o))
    162: (o(o)(o)(o)(o))
    243: ((o)(o)(o)(o)(o))
    486: (o(o)(o)(o)(o)(o))
    729: ((o)(o)(o)(o)(o)(o))
		

Crossrefs

Positions of first appearances in A358729.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height.
A055277 counts rooted trees by nodes and leaves.
MG differences: A358580, A358724, A358726, A358729.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    rd=Table[Count[MGTree[n],_,{0,Infinity}]-(Depth[MGTree[n]]-1),{n,10000}];
    Table[Position[rd,k][[1,1]],{k,Union[rd]}]

A318046 a(n) is the number of initial subtrees (subtrees emanating from the root) of the unlabeled rooted tree with Matula-Goebel number n.

Original entry on oeis.org

1, 2, 3, 2, 4, 3, 3, 2, 5, 4, 5, 3, 4, 3, 7, 2, 4, 5, 3, 4, 5, 5, 6, 3, 10, 4, 9, 3, 5, 7, 6, 2, 9, 4, 7, 5, 4, 3, 7, 4, 5, 5, 4, 5, 13, 6, 8, 3, 5, 10, 7, 4, 3, 9, 13, 3, 5, 5, 5, 7, 6, 6, 9, 2, 10, 9, 4, 4, 11, 7, 5, 5, 6, 4, 19, 3, 9, 7, 6, 4, 17, 5, 7, 5
Offset: 1

Views

Author

Gus Wiseman, Aug 13 2018

Keywords

Comments

We require that an initial subtree contain either all or none of the branchings under any given node.

Examples

			70 is the Matula-Goebel number of the tree (o((o))(oo)), which has 7 distinct initial subtrees: {o, (ooo), (oo(oo)), (o(o)o), (o(o)(oo)), (o((o))o), (o((o))(oo))}. So a(70) = 7.
		

Crossrefs

Programs

  • Mathematica
    si[n_]:=If[n==1,1,1+Product[si[PrimePi[b[[1]]]]^b[[2]],{b,FactorInteger[n]}]];
    Array[si,100]

Formula

a(1) = 1 and if n > 1 has prime factorization n = prime(x_1)^y_1 * ... * prime(x_k)^y_k then a(n) = 1 + a(x_1)^y_1 * ... * a(x_k)^y_k.

A322027 Maximum order of primeness among the prime factors of n; a(1) = 0.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 1, 1, 2, 3, 4, 2, 1, 1, 3, 1, 2, 2, 1, 3, 2, 4, 1, 2, 3, 1, 2, 1, 1, 3, 5, 1, 4, 2, 3, 2, 1, 1, 2, 3, 2, 2, 1, 4, 3, 1, 1, 2, 1, 3, 2, 1, 1, 2, 4, 1, 2, 1, 3, 3, 1, 5, 2, 1, 3, 4, 2, 2, 2, 3, 1, 2, 1, 1, 3, 1, 4, 2, 1, 3, 2, 2, 2, 2, 3, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Nov 24 2018

Keywords

Comments

The order of primeness (A078442) of a prime number p is the number of times one must apply A000720 to obtain a nonprime number.

Examples

			a(105) = 3 because the prime factor of 105 = 3*5*7 with maximum order of primeness is 5, with order 3.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    p:= proc(n) option remember;
          `if`(isprime(n), 1+p(pi(n)), 0)
        end:
    a:= n-> max(0, map(p, factorset(n))):
    seq(a(n), n=1..120);  # Alois P. Heinz, Nov 24 2018
  • Mathematica
    Table[If[n==1,0,Max@@(Length[NestWhileList[PrimePi,PrimePi[#],PrimeQ]]&/@FactorInteger[n][[All,1]])],{n,100}]

A325544 Number of nodes in the rooted tree with Matula-Goebel number n!.

Original entry on oeis.org

1, 1, 2, 4, 6, 9, 12, 15, 18, 22, 26, 30, 34, 38, 42, 47, 51, 55, 60, 64, 69, 74, 79, 84, 89, 95, 100, 106, 111, 116, 122, 127, 132, 138, 143, 149, 155, 160, 165, 171, 177, 182, 188, 193, 199, 206, 212, 218, 224, 230, 237, 243, 249, 254, 261, 268, 274, 280
Offset: 0

Views

Author

Gus Wiseman, May 09 2019

Keywords

Comments

Also one plus the number of factors in the factorization of n! into factors q(i) = prime(i)/i. For example, the q-factorization of 7! is 7! = q(1)^9 * q(2)^3 * q(3) * q(4), with 14 = a(7) - 1 factors.

Examples

			Matula-Goebel trees of the first 9 factorial number are:
  0!: o
  1!: o
  2!: (o)
  3!: (o(o))
  4!: (ooo(o))
  5!: (ooo(o)((o)))
  6!: (oooo(o)(o)((o)))
  7!: (oooo(o)(o)((o))(oo))
  8!: (ooooooo(o)(o)((o))(oo))
The number of nodes is the number of o's plus the number of brackets, giving {1,1,2,4,6,9,12,15,18}, as required.
		

Crossrefs

Programs

  • Mathematica
    mgwt[n_]:=If[n==1,1,1+Total[Cases[FactorInteger[n],{p_,k_}:>mgwt[PrimePi[p]]*k]]];
    Table[mgwt[n!],{n,0,100}]

Formula

For n > 1, a(n) = 1 - n + Sum_{k = 1..n} A061775(k).

A325613 Full q-signature of n. Irregular triangle read by rows where T(n,k) is the multiplicity of q(k) in the q-factorization of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 0, 0, 1, 3, 2, 2, 2, 1, 1, 1, 1, 1, 0, 1, 3, 1, 2, 1, 0, 0, 0, 1, 3, 0, 0, 1, 2, 2, 1, 4, 2, 0, 0, 1, 0, 0, 1, 3, 2, 3, 0, 0, 0, 0, 0, 0, 1, 3, 1, 1, 3, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 0, 0, 0, 0, 0, 0, 1, 4, 1, 2, 2, 2, 3, 1, 0, 0
Offset: 1

Views

Author

Gus Wiseman, May 12 2019

Keywords

Comments

Every positive integer has a unique q-factorization (encoded by A324924) into factors q(i) = prime(i)/i, i > 0. For example:
11 = q(1) q(2) q(3) q(5)
50 = q(1)^3 q(2)^2 q(3)^2
360 = q(1)^6 q(2)^3 q(3)
Also the number of terminal subtrees with Matula-Goebel number k of the rooted tree with Matula-Goebel number n.

Examples

			Triangle begins:
  {}
  1
  1 1
  2
  1 1 1
  2 1
  2 0 0 1
  3
  2 2
  2 1 1
  1 1 1 0 1
  3 1
  2 1 0 0 0 1
  3 0 0 1
  2 2 1
  4
  2 0 0 1 0 0 1
  3 2
  3 0 0 0 0 0 0 1
  3 1 1
		

Crossrefs

Row lengths are A061395.
Row sums are A196050.
Row-maxima are A109129.
The number whose full prime signature is the n-th row is A324922(n).
Cf. A067255.
Matula-Goebel numbers: A007097, A061775, A109082, A317713.
q-factorization: A324923, A324924, A325613, A325614, A325615, A325660.

Programs

  • Mathematica
    difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]];
    qsig[n_]:=If[n==1,{},With[{ms=difac[n]},Table[Count[ms,i],{i,Max@@ms}]]];
    Table[qsig[n],{n,30}]

A357139 Take the weakly increasing prime indices of each prime index of n, then concatenate.

Original entry on oeis.org

1, 2, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 2, 5, 1, 3, 4, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 6, 1, 1, 1, 1, 4, 3, 1, 1, 2, 2, 2, 2, 3, 1, 1, 1, 1, 1, 2, 2, 1, 4, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Sep 29 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			Triangle begins:
   1:
   2:
   3:  1
   4:
   5:  2
   6:  1
   7:  1 1
   8:
   9:  1 1
  10:  2
  11:  3
  12:  1
  13:  1 2
For example, the weakly increasing prime indices of 105 are (2,3,4), with prime indices ((1),(2),(1,1)), so row 105 is (1,2,1,1).
		

Crossrefs

Row lengths are A302242.
Positions of strict rows are A302505.
Positions of constant rows are A302593.
Row sums are A325033, products A325032.
The version for standard compositions is A357135, rank A357134.
A000961 lists prime powers.
A003963 multiples prime indices.
A056239 adds up prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Join@@Table[Join@@primeMS/@primeMS[n],{n,100}]
Previous Showing 31-40 of 56 results. Next