cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A120052 Number of 11-almost primes less than or equal to 10^n.

Original entry on oeis.org

0, 0, 0, 0, 7, 138, 1878, 23448, 279286, 3230577, 36585097, 407818620, 4490844534, 48972151631, 529781669333, 5693047157230, 60832290450373, 646862625625663, 6849459596884350, 72259172519243461
Offset: 0

Views

Author

Robert G. Wilson v, Feb 07 2006

Keywords

Examples

			There are 7 eleven-almost primes up to 10000: 2048, 3072, 4608, 5120, 6912, 7168, and 7680.
		

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[AlmostPrimePi[11, 10^n], {n, 12}]

Extensions

a(14) from Robert G. Wilson v, Jan 07 2007
a(15)-a(19) from Henri Lifchitz, Mar 18 2025

A120034 Number of 3-almost primes t such that 2^n < t <= 2^(n+1).

Original entry on oeis.org

0, 0, 1, 1, 5, 6, 17, 30, 65, 131, 257, 536, 1033, 2132, 4187, 8370, 16656, 33123, 65855, 130460, 259431, 513737, 1019223, 2019783, 4003071, 7930375, 15712418, 31126184, 61654062, 122137206, 241920724, 479226157, 949313939, 1880589368, 3725662783
Offset: 0

Views

Author

Keywords

Comments

The partial sum equals the number of Pi_3(2^n) = A127396(n).

Examples

			(2^3, 2^4] there is one semiprime, namely 12. 8 was counted in the previous entry.
		

Crossrefs

Programs

  • Mathematica
    ThreeAlmostPrimePi[n_] := Sum[PrimePi[n/(Prime@i*Prime@j)] - j + 1, {i, PrimePi[n^(1/3)]}, {j, i, PrimePi@Sqrt[n/Prime@i]}]; t = Table[ ThreePrimePi[2^n], {n, 0, 35}]; Rest@t - Most@t

A072114 Number of 3-almost primes (A014612) <= n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 9, 10, 10, 10, 10, 10, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 16, 16, 16, 17, 18, 18, 19, 19, 19, 19, 19, 19, 19
Offset: 0

Views

Author

Benoit Cloitre, Jun 19 2002

Keywords

Comments

Number of k <= n such that bigomega(k) = 3.
Let A be a positive integer then card{ x <= n : bigomega(x) = A } ~ (n/Log(n))*Log(Log(n))^(A-1)/(A-1)!. For which n, card{ x <= n : bigomega(x) = 3 } >= card{ x <= n : bigomega(x) = 2 } ?
15530 is the first number for which there are more 3-almost primes than 2-almost primes. See A125149.

References

  • E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, vol. 1, Teubner, Leipzig; third edition : Chelsea, New York (1974).
  • G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, p. 203, Publications de l'Institut Cartan, 1990.

Crossrefs

Partial sums of A101605.
Cf. A125149.

Programs

  • Mathematica
    Table[Sum[KroneckerDelta[PrimeOmega[i], 3], {i, n}], {n, 0, 50}] (* Wesley Ivan Hurt, Oct 07 2014 *)
  • PARI
    for(n=1,100,print1(sum(i=1,n,bigomega(i)==3),","))
    
  • PARI
    a(n)=my(j,s);forprime(p=2,(n+.5)^(1/3),j=primepi(p)-2;forprime(q=p,sqrtint(n\p),s+=primepi(n\(p*q))-j++));s \\ Charles R Greathouse IV, Mar 21 2012
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A072114(n): return int(sum(primepi(n//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(n,3)[0]+1)) for b,m in enumerate(primerange(k,isqrt(n//k)+1),a))) # Chai Wah Wu, Aug 17 2024

Formula

a(n) = card{ x <= n : bigomega(x) = 3 }, asymptotically : a(n) ~ (n/log(n))*log(log(n))^2/2 [Landau, p. 211].

A127396 Number of 3-almostprimes <= 2^n.

Original entry on oeis.org

0, 0, 1, 2, 7, 13, 30, 60, 125, 256, 513, 1049, 2082, 4214, 8401, 16771, 33427, 66550, 132405, 262865, 522296, 1036033, 2055256, 4075039, 8078110, 16008485, 31720903, 62847087, 124501149, 246638355, 488559079, 967785236, 1917099175, 3797688543
Offset: 1

Views

Author

Robert G. Wilson v, Dec 29 2006

Keywords

Crossrefs

Programs

  • Mathematica
    ThreeAlmostPrimePi[n_] := Sum[PrimePi[n/(Prime@i*Prime@j)] - j + 1, {i, PrimePi[n^(1/3)]}, {j, i, PrimePi[Sqrt[n/Prime@i]]}]; Table[ ThreeAlmostPrimePi[2^n], {n, 30}]

Formula

a(n) = A072114(2^n). - R. J. Mathar, Aug 26 2011

A126280 Triangle read by rows: T(k,n) is number of numbers <= 10^n that are products of k primes.

Original entry on oeis.org

4, 4, 1, 25, 34, 22, 12, 4, 2, 168, 299, 247, 149, 76, 37, 14, 7, 2, 1229, 2625, 2569, 1712, 963, 485, 231, 105, 47, 22, 7, 3, 1, 9592, 23378, 25556, 18744, 11185, 5933, 2973, 1418, 671, 306, 138, 63, 25, 11, 4, 2, 78498, 210035, 250853, 198062, 124465, 68963
Offset: 1

Views

Author

Keywords

Comments

The n-th row's sum is 10^n - 1.

Examples

			4 4 1
25 34 22 12 4 2
168 299 247 149 76 37 14
7 2
1229 2625 2569 1712 963 485 231
105 47 22 7 3 1
9592 23378 25556 18744 11185 5933 2973
1418 671 306 138 63 25 11 4 2
78498 210035 250853 198062 124465 68963 35585 17572
8491 4016 1878 865 400 179 79 35 14 7 2
664579 1904324 2444359 2050696 1349779 774078 409849 207207
101787 49163 23448 11068 5210 2406 1124 510 233 102 45 21 7 3 1
		

Crossrefs

The n-th row's sum: A002283 = 10^n -1, A116430, A126279: same array but for powers of two.

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[ PrimePi[ n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[ Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[ AlmostPrimePi[m, 10^n], {n, 6}, {m, Floor[Log[2, 10^n]] }] // Flatten

A117526 Least number a(n) which is a product of n primes and such that Pi_n(a(n))/a(n) is maximum.

Original entry on oeis.org

3, 10, 9837, 259441550133
Offset: 1

Views

Author

Martin Raab and Robert G. Wilson v, Mar 25 2006

Keywords

Comments

Pi_n(a(n))/a(n): 0.66667, 0.40000, 0.25801, 0.2145967653
3=3, 10=2*5, 9837=3*3*1093 & 259441550133=3*89*311*3124409.
3 is the second prime, 10 is the fourth semiprime, 9837 is the 3-almost prime, and 259441550133 is the 4-almost prime.

Examples

			a(1)=3 because Pi(2)/2=1/2 < Pi(3)/3=2/3 > Pi(5)/5=3/5.
a(2)=10 because Pi_2(9)/9=1/3 < Pi_2(10)/10=2/5 > Pi_2(14)/14=5/14; Pi_2(10)/10 = Pi_2(15)/15 but 10 < 15.
		

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    fQ[n_] := Plus @@ Last /@ FactorInteger@n == 4; c = r = 0; Do[If[fQ@n, c++ ]; If[c/n > r, Print[n]; r = c/n], {n, 10^6}]

Extensions

Comment edited and a(4) added by Donovan Johnson, Mar 10 2010

A120044 The 10^n-th 3-almost prime.

Original entry on oeis.org

8, 45, 412, 3918, 38991, 395085, 4046429, 41657362, 429891626, 4439956573, 45851698382, 473238120286, 4880292241955, 50280826966354
Offset: 0

Views

Author

Robert G. Wilson v, Feb 15 2006

Keywords

Crossrefs

Programs

  • Mathematica
    ThreeAlmostPrimePi[n_] := Sum[ PrimePi[n/(Prime@i*Prime@j)] - j + 1, {i, PrimePi[n^(1/3)]}, {j, i, PrimePi@ Sqrt[n/Prime@i]}]; ThreeAlmostPrime[n_] := Block[{e = Floor[Log[2, n]], a, b}, a = 2^e; Do[b = 2^p; While[ThreeAlmostPrimePi[a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; Do[ Print@ThreeAlmostPrime[10^n], {n, 0, 13}]
    ThreePrime[n_] := Block[{e = Floor[ Log[2, n] +2], a, b}, a = 2^e; Do[b = 2^p; While[ ThreePrimePi[a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; Table[ ThreePrime[n], {n, 0, 13}]

A124033 Number of n-digit numbers having exactly n prime factors (counted with multiplicity).

Original entry on oeis.org

4, 31, 225, 1563, 10222, 63030, 374264, 2160300, 12196405, 67724342, 371233523, 2014305995, 10841722966, 57974736592, 308361428628, 1632877406997
Offset: 1

Views

Author

J. M. Bergot, Apr 08 2011

Keywords

Comments

Essentially the same as A036335.
What would be the ratio between a(n) and all possible numbers with n digits for each n?

Examples

			a(1) = A006880(1) = 4.
a(2) = A066265(2) - A066265(1) = 34 - 3 = 31.
a(3) = A109251(3) - A109251(2) = 247 - 22 = 225.
a(4) = A114106(4) - A114106(3) = 1712 - 149 = 1563.
a(5) = A114453(5) - A114453(4) = 11185 - 963 = 10222.
a(6) = A120047(6) - A120047(5) = 68963 - 5933 = 63030.
a(7) = A120048(7) - A120048(6) = 409849 - 35585 = 374264.
a(8) = A120049(8) - A120049(7) = 2367507 - 207207 = 2160300.
a(9) = A120050(9) - A120050(8) = 13377156 - 1180751 = 12196405.
a(10) = A120051(10) - A120051(9) = 74342563 - 6618221 = 67724342.
a(11) = A120052(11) - A120052(10) = 407818620 - 36585097 = 371233523.
a(12) = A120053(12) - A120053(11) = 2214357712 - 200051717 = 2014305995.
		

Programs

  • Mathematica
    Table[Count[Range[10^(n-1),10^n-1],?(PrimeOmega[#]==n&)],{n,8}]  (* _Harvey P. Dale, Apr 22 2011 *)
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    f[n_] := AlmostPrimePi[n, 10^n - 1] - AlmostPrimePi[n, 10^(n - 1) - 1]; Array[f, 12] (* Robert G. Wilson v, Jul 06 2012 *)

Extensions

Corrected and extended by Ray Chandler, Apr 11 2011
a(9)-a(12) from Ray Chandler, Apr 12 2011
a(13)-a(16) from Robert G. Wilson v, Jul 06 2012
Previous Showing 11-18 of 18 results.