cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 50 results. Next

A000753 Boustrophedon transform of Catalan numbers.

Original entry on oeis.org

1, 2, 5, 16, 59, 243, 1101, 5461, 29619, 175641, 1137741, 8031838, 61569345, 510230087, 4549650423, 43452408496, 442620720531, 4790322653809, 54893121512453, 663974736739232, 8453986695437957, 113021461431438475
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a000753 n = sum $ zipWith (*) (a109449_row n) a000108_list
    -- Reinhard Zumkeller, Nov 05 2013
    
  • Mathematica
    CoefficientList[Series[E^(2*x) * (BesselI[0,2*x] - BesselI[1,2*x]) * (Sec[x] + Tan[x]),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Oct 30 2014 after Sergei N. Gladkovskii *)
  • Python
    from itertools import accumulate, count, islice
    def A000753_gen(): # generator of terms
        blist, c = tuple(), 1
        for i in count(0):
            yield (blist := tuple(accumulate(reversed(blist),initial=c)))[-1]
            c = c*(4*i+2)//(i+2)
    A000753_list = list(islice(A000753_gen(),30)) # Chai Wah Wu, Jun 11 2022

Formula

a(n) = Sum_{k=0..n} A109449(n,k)*A000108(k). - Reinhard Zumkeller, Nov 05 2013
E.g.f.: (sec(x) + tan(x))*exp(2*x)*(BesselI(0,2*x) - BesselI(1,2*x)). - Sergei N. Gladkovskii, Oct 30 2014
a(n) ~ n! * exp(Pi) * (BesselI(0, Pi) - BesselI(1, Pi)) * 2^(n+2) / Pi^(n+1). - Vaclav Kotesovec, Oct 30 2014

A231179 Boustrophedon transform of nonnegative integers, cf. A001477.

Original entry on oeis.org

0, 1, 4, 12, 36, 120, 462, 2058, 10472, 59976, 381770, 2673374, 20422908, 169020852, 1506427678, 14385323610, 146527700944, 1585801332848, 18171944693586, 219803766565366, 2798628476670180, 37414906698747564, 524019526485293894, 7672827408344428242
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 05 2013

Keywords

Crossrefs

Programs

  • Haskell
    a231179 n = sum $ zipWith (*) (a109449_row n) [0..]
    
  • Mathematica
    a[n_] := n! SeriesCoefficient[x Exp[x] (1+Sin[x]) / Cos[x], {x, 0, n}];
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jul 30 2018, after Peter Luschny *)
  • Python
    from itertools import count, islice, accumulate
    def A231179_gen(): # generator of terms
        blist = tuple()
        for i in count(0):
            yield (blist := tuple(accumulate(reversed(blist),initial=i)))[-1]
    A231179_list = list(islice(A231179_gen(),30)) # Chai Wah Wu, Jun 11 2022

Formula

a(n) = A231200(n)/2.
a(n) = Sum_{k=1..n} k * A109449(n,k).
E.g.f.: x*exp(x)*(sec(x)+tan(x)). (After Sergei N. Gladkovskii in A000660.) - Peter Luschny, Oct 28 2014
a(n) = A000660(n) - A000111(n). - Sergei N. Gladkovskii, Oct 28 2014
a(n) ~ n! * exp(Pi/2) * 2^(n+1) / Pi^n. - Vaclav Kotesovec, Jun 12 2015

A000752 Boustrophedon transform of powers of 2.

Original entry on oeis.org

1, 3, 9, 28, 93, 338, 1369, 6238, 31993, 183618, 1169229, 8187598, 62545893, 517622498, 4613366689, 44054301358, 448733127793, 4856429646978, 55650582121749, 673136951045518, 8570645832753693, 114581094529057058, 1604780986816602409, 23497612049668468078
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=2 of A292975.

Programs

  • Haskell
    a000752 n = sum $ zipWith (*) (a109449_row n) a000079_list
    -- Reinhard Zumkeller, Nov 03 2013
    
  • Mathematica
    t[n_, 0] := 2^n; t[n_, k_] := t[n, k] = t[n, k - 1] + t[n - 1, n - k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
    With[{nn=30},CoefficientList[Series[Exp[2x](Tan[ x]+Sec[x]),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Dec 15 2018 *)
  • Python
    from itertools import accumulate, islice
    def A000752_gen(): # generator of terms
        blist, m = tuple(), 1
        while True:
            yield (blist := tuple(accumulate(reversed(blist),initial=m)))[-1]
            m *= 2
    A000752_list = list(islice(A000752_gen(),40)) # Chai Wah Wu, Jun 12 2022

Formula

E.g.f.: exp(2*x) (tan(x) + sec(x)).
a(n) = Sum_{k=0..n} A109449(n,k)*2^k. - Reinhard Zumkeller, Nov 03 2013
G.f.: E(0)*x/(1 - 2*x)/(1 - 3*x) + 1/(1 - 2*x), where E(k) = 1 - x^2*(k+1)*(k+2)/(x^2*(k+1)*(k+2) - 2*(x*(k+3) - 1)*(x*(k+4) -1)/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jan 16 2014
a(n) ~ n! * exp(Pi) * 2^(n+2) / Pi^(n+1). - Vaclav Kotesovec, Jun 12 2015

A162660 Triangle read by rows: coefficients of the complementary Swiss-Knife polynomials.

Original entry on oeis.org

0, 1, 0, 0, 2, 0, -2, 0, 3, 0, 0, -8, 0, 4, 0, 16, 0, -20, 0, 5, 0, 0, 96, 0, -40, 0, 6, 0, -272, 0, 336, 0, -70, 0, 7, 0, 0, -2176, 0, 896, 0, -112, 0, 8, 0, 7936, 0, -9792, 0, 2016, 0, -168, 0, 9, 0, 0, 79360, 0, -32640, 0, 4032, 0, -240, 0, 10, 0
Offset: 0

Views

Author

Peter Luschny, Jul 09 2009

Keywords

Comments

Definition. V_n(x) = (skp(n, x+1) - skp(n, x-1))/2 where skp(n,x) are the Swiss-Knife polynomials A153641. - Peter Luschny, Jul 23 2012
Equivalently, let the polynomials V_n(x) (n>=0) defined by V_n(x) = Sum_{k=0..n} Sum_{v=0..k} (-1)^v*C(k,v)*L(k)*(x+v+1)^n; the sequence L(k) = -1 - H(k-1)*(-1)^floor((k-1)/4) / 2^floor(k/2) if k > 0 and L(0)=0; H(k) = 1 if k mod 4 <> 0, otherwise 0.
(1) V_n(0) = 2^n * Euler(n,1) for n > 0, A155585.
(2) V_n(1) = 1 - Euler(n).
(3) V_{n-1}(0) n / (4^n - 2^n) = B_n gives for n > 1 the Bernoulli numbers A027641/A027642.
(4) V_{n-1}(0) n (2/2^n-2)/(2^n-1) = G_n the Genocchi number A036968 for n > 1.
(5) V_n(1/2)2^{n} - 1 is a signed version of the generalized Euler (Springer) numbers, see A001586.
The Swiss-Knife polynomials (A153641) are complementary to the polynomials defined here. Adding both gives polynomials with e.g.f. exp(x*t)*(sech(t)+tanh(t)), the coefficients of which are a signed variant of A109449.
The Swiss-Knife polynomials as well as the complementary Swiss-Knife polynomials are closely related to the Bernoulli and Euler polynomials. Let F be a sequence and
P_{F}[n](x) = Sum_{k=0..n} Sum_{v=0..k} (-1)^v*C(k,v)*F(k)*(x+v+1)^n.
V_n(x) = P_{F}[n](x) with F(k)=L(k) defined above, are the Co-Swiss-Knife polynomials,
W_n(x) = P_{F}[n](x) with F(k)=c(k) the Chen sequence defined in A153641 are the Swiss-Knife polynomials.
B_n(x) = P_{F}[n](x-1) with F(k)=1/(k+1) are the Bernoulli polynomials,
E_n(x) = P_{F}[n](x-1) with F(k)=2^(-k) are the Euler polynomials.
The most striking formal difference between the Swiss-Knife-type polynomials and the Bernoulli-Euler type polynomials is: The SK-type polynomials have integer coefficients whereas the BE-type polynomials have rational coefficients.
Let R be the exponential Riordan array (exp(x)*sech(x), x) = P * A119879 = 2*P(I + P^2)^(-1) where P denotes Pascal's triangle A007318. Then T = R - I. - Peter Bala, Mar 07 2024

Examples

			Triangle begins:
  [0]    0;
  [1]    1,     0;
  [2]    0,     2,     0;
  [3]   -2,     0,     3,   0;
  [4]    0,    -8,     0,   4,    0;
  [5]   16,     0,   -20,   0,    5,    0;
  [6]    0,    96,     0, -40,    0,    6,    0;
  [7] -272,     0,   336,   0,  -70,    0,    7,  0;
  [8]    0, -2176,     0, 896,    0, -112,    0,  8,  0;
  [9] 7936,     0, -9792,   0, 2016,    0, -168,  0,  9,  0;
		

Crossrefs

V_n(k), n=0, 1, ..., k=0: A155585, k=1: A009832,
V_n(k), k=0, 1, ..., V_0: A000004, V_1: A000012, V_2: A005843, V_3: A100536.

Programs

  • Maple
    # Polynomials V_n(x):
    V := proc(n,x) local k,pow; pow := (n,k) -> `if`(n=0 and k=0,1,n^k); add(binomial(n,k)*euler(k)*pow(x+1,n-k),k=0..n) - pow(x,n) end:
    # Coefficients a(n):
    seq(print(seq(coeff(n!*coeff(series(exp(x*t)*tanh(t),t,16),t,n),x,k),k=0..n)),n=0..8);
  • Mathematica
    skp[n_, x_] := Sum[Binomial[n, k]*EulerE[k]*x^(n-k), {k, 0, n}]; v[n_, x_] := (skp[n, x+1]-skp[n, x-1])/2; t[n_, k_] := Coefficient[v[n, x], x, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 09 2014 *)
  • Sage
    R = PolynomialRing(QQ, 'x')
    @CachedFunction
    def skp(n, x) : # Swiss-Knife polynomials A153641.
        if n == 0 : return 1
        return add(skp(k, 0)*binomial(n, k)*(x^(n-k)-(n+1)%2) for k in range(n)[::2])
    def A162660(n,k) : return 0 if k > n else R((skp(n, x+1)-skp(n, x-1))/2)[k]
    matrix(ZZ, 9, A162660) # Peter Luschny, Jul 23 2012

Formula

T(n, k) = [x^(n-k)](skp(n,x+1)-skp(n,x-1))/2 where skp(n,x) are the Swiss-Knife polynomials A153641. - Peter Luschny, Jul 23 2012
E.g.f. exp(x*t)*tanh(t) = 0*(t^0/0!) + 1*(t^1/1!) + (2*x)*(t^2/2!) + (3*x^2-2)*(t^3/3!) + ...
V_n(x) = -x^n + Sum_{k=0..n} C(n,k)*Euler(k)*(x+1)^(n-k).

A230953 Boustrophedon transform of odd primes, cf. A065091.

Original entry on oeis.org

3, 8, 20, 53, 154, 505, 1944, 8651, 44046, 252271, 1605874, 11245261, 85907084, 710970323, 6336648426, 60510526207, 616355168958, 6670526004559, 76438597647616, 924584128977111, 11772170758462928, 157382330019694067, 2204239468545788024, 32275035859881159165
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 03 2013

Keywords

Crossrefs

Programs

  • Haskell
    a230953 n = sum $ zipWith (*) (a109449_row n) $ tail a000040_list
    
  • Mathematica
    t[n_, 0] := Prime[n+2]; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
  • Python
    from itertools import accumulate, count, islice
    from sympy import prime
    def A230953_gen(): # generator of terms
        blist = tuple()
        for i in count(2):
            yield (blist := tuple(accumulate(reversed(blist),initial=prime(i))))[-1]
    A230953_list = list(islice(A230953_gen(),40)) # Chai Wah Wu, Jun 12 2022

Formula

a(n) = Sum_{k=0..n} A109449(n,k)*A000040(k+2).
E.g.f.: (sec(x) + tan(x)) * Sum_{k>=0} prime(k+2)*x^k/k!. - Ilya Gutkovskiy, Jun 26 2018

A230954 Boustrophedon transform of composite numbers.

Original entry on oeis.org

4, 10, 24, 59, 162, 526, 2016, 8978, 45696, 261760, 1666308, 11668652, 89141580, 737740174, 6575238599, 62788901290, 639562492327, 6921688171153, 79316703841369, 959397056891093, 12215422719238138, 163308172248420391, 2287234651735371577
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 03 2013

Keywords

Crossrefs

Programs

  • Haskell
    a230954 n = sum $ zipWith (*) (a109449_row n) a002808_list
    
  • Mathematica
    cc = Select[Range[max = 40], CompositeQ]; t[n_, 0] := cc[[n+1]]; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, cc // Length, 0] (* Jean-François Alcover, Feb 12 2016 *)
  • Python
    from itertools import accumulate, count, islice
    from sympy import composite
    def A230954_gen(): # generator of terms
        blist = tuple()
        for i in count(1):
            yield (blist := tuple(accumulate(reversed(blist),initial=composite(i))))[-1]
    A230954_list = list(islice(A230954_gen(),40)) # Chai Wah Wu, Jun 12 2022

Formula

a(n) = sum(A109449(n,k)*A002808(k+1): k=0..n).

A230955 Boustrophedon transform of nonprimes.

Original entry on oeis.org

1, 5, 15, 40, 114, 371, 1422, 6334, 32238, 184655, 1175454, 8231308, 62882262, 520416569, 4638303786, 44292536061, 451160065069, 4882696090609, 55951575728713, 676777708544967, 8617001415386120, 115200823068725262, 1613460678695102980, 23624702309844184487
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 03 2013

Keywords

Crossrefs

Programs

  • Haskell
    a230955 n = sum $ zipWith (*) (a109449_row n) a018252_list
    
  • Mathematica
    cc = Select[Range[max = 40], !PrimeQ[#]&]; t[n_, 0] := cc[[n+1]]; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, cc // Length, 0] (* Jean-François Alcover, Feb 12 2016 *)
  • Python
    from itertools import accumulate, count, islice
    from sympy import composite
    def A230955_gen(): # generator of terms
        yield 1
        blist = (1,)
        for i in count(1):
            yield (blist := tuple(accumulate(reversed(blist),initial=composite(i))))[-1]
    A230955_list = list(islice(A230955_gen(),40)) # Chai Wah Wu, Jun 12 2022

Formula

a(n) = Sum_{k=0..n} A109449(n,k)*A018252(k+1).

A000744 Boustrophedon transform (second version) of Fibonacci numbers 1,1,2,3,...

Original entry on oeis.org

1, 2, 5, 14, 42, 144, 563, 2526, 12877, 73778, 469616, 3288428, 25121097, 207902202, 1852961189, 17694468210, 180234349762, 1950592724756, 22352145975707, 270366543452702, 3442413745494957, 46021681757269830
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 144*x^5 + 563*x^6 + 2526*x^7 + ...
		

Crossrefs

Programs

  • Haskell
    a000744 n = sum $ zipWith (*) (a109449_row n) $ tail a000045_list
    -- Reinhard Zumkeller, Nov 03 2013
    
  • Maple
    read(transforms);
    with(combinat):
    F:=fibonacci;
    [seq(F(n), n=1..50)];
    BOUS2(%);
  • Mathematica
    s[k_] := SeriesCoefficient[(1 + Sin[x])/Cos[x], {x, 0, k}] k!;
    b[n_, k_] := Binomial[n, k] s[n - k];
    a[n_] := Sum[b[n, k] Fibonacci[k + 1], {k, 0, n}];
    Array[a, 22, 0] (* Jean-François Alcover, Jun 01 2019 *)
  • Python
    from itertools import accumulate, islice
    def A000744_gen(): # generator of terms
        blist, a, b = tuple(), 1, 1
        while True:
            yield (blist := tuple(accumulate(reversed(blist),initial=a)))[-1]
            a, b = b, a+b
    A000744_list = list(islice(A000744_gen(),40)) # Chai Wah Wu, Jun 12 2022

Formula

a(n) = Sum_{k=0..n} A109449(n,k)*A000045(k+1). - Reinhard Zumkeller, Nov 03 2013
E.g.f.: (1/10)*(sec(x)+tan(x))*((5^(1/2)+1)*exp(1/2*x*(5^(1/2)+1))+(5^(1/2)-1)*exp(1/2*x*(-5^(1/2)+1)))*5^(1/2). - Sergei N. Gladkovskii, Oct 30 2014
a(n) ~ n! * (sqrt(5) - 1 + (1+sqrt(5)) * exp(sqrt(5)*Pi/2)) * 2^(n+1) / (sqrt(5) * exp((sqrt(5)-1)*Pi/4) * Pi^(n+1)). - Vaclav Kotesovec, Jun 12 2015

Extensions

Entry revised by N. J. A. Sloane, Mar 16 2011

A062161 Boustrophedon transform of n mod 2.

Original entry on oeis.org

0, 1, 2, 4, 12, 36, 142, 624, 3192, 18256, 116282, 814144, 6219972, 51475776, 458790022, 4381112064, 44625674352, 482962852096, 5534347077362, 66942218896384, 852334810990332, 11394877025289216, 159592488559874302, 2336793875186479104, 35703580441464231912
Offset: 0

Views

Author

Frank Ellermann, Jun 10 2001

Keywords

Crossrefs

Programs

  • Haskell
    a062161 n = sum $ zipWith (*) (a109449_row n) $ cycle [0,1]
    -- Reinhard Zumkeller, Nov 03 2013
    
  • Mathematica
    With[{nn=30},CoefficientList[Series[(Sec[x]+Tan[x])Sinh[x],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Feb 16 2013 *)
  • Python
    from itertools import accumulate, islice
    def A062161_gen(): # generator of terms
        blist, m = tuple(), 1
        while True:
            yield (blist := tuple(accumulate(reversed(blist),initial=(m := 1-m))))[-1]
    A062161_list = list(islice(A062161_gen(),40)) # Chai Wah Wu, Jun 12 2022
  • Sage
    # Generalized algorithm of L. Seidel (1877)
    def A062161_list(n) :
        R = []; A = {-1:0, 0:0}
        k = 0; e = 1
        for i in range(n) :
            Am = 1 if e == -1 else 0
            A[k + e] = 0
            e = -e
            for j in (0..i) :
                Am += A[k]
                A[k] = Am
                k += e
            # print [A[z] for z in (-i//2..i//2)]
            R.append(A[e*i//2])
        return R
    A062161_list(10) # Peter Luschny, Jun 02 2012
    

Formula

a(2n) = A009747(n), a(2n+1) = A002084(n).
E.g.f.: (sec(x)+tan(x))*sinh(x); a(n)=(A000667(n)-A062162(n))/2. - Paul Barry, Jan 21 2005
a(n) = Sum{k, k>=0} binomial(n, 2k+1)*A000111(n-2k-1). - Philippe Deléham, Aug 28 2005
a(n) = Sum_{k=0..n} A109449(n,k) * (k mod 2). - Reinhard Zumkeller, Nov 03 2013 [corrected by Jason Yuen, Jan 07 2025]

A230961 Boustrophedon transform of factorials beginning with 1, cf. A000142.

Original entry on oeis.org

1, 3, 11, 50, 273, 1746, 12823, 106462, 986689, 10103074, 113309991, 1381835454, 18209834849, 257911743506, 3907538236631, 63066584719982, 1080340925760129, 19577690297352258, 374214932301757255, 7524626434657416286, 158783753482817132065
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 05 2013

Keywords

Crossrefs

Cf. A230960.

Programs

  • Haskell
    a230961 n = sum $ zipWith (*) (a109449_row n) $ tail a000142_list
    
  • Mathematica
    T[n_, k_] := (n!/k!) SeriesCoefficient[(1 + Sin[x])/Cos[x], {x, 0, n - k}];
    a[n_] := Sum[T[n, k] (k + 1)!, {k, 0, n}];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 23 2019 *)
  • Python
    from itertools import accumulate, count, islice
    def A230961_gen(): # generator of terms
        blist, m = tuple(), 1
        for i in count(1):
            yield (blist := tuple(accumulate(reversed(blist),initial=(m := m*i))))[-1]
    A230961_list = list(islice(A230961_gen(),40)) # Chai Wah Wu, Jun 12 2022

Formula

a(n) = sum(A109449(n,k)*A000142(k+1): k=0..n).
E.g.f.: conjecture: (tan(x)+sec(x))/(1-2*x+x^2) = (1- 12*x/ (Q(0)+6*x+3*x^2))/(1-x)^2, where Q(k) = 2*(4*k+1)*(32*k^2+16*k - x^2-6) - x^4*(4*k-1)*(4*k+7)/Q(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Nov 18 2013
a(n) ~ n! * n * (1+sin(1))/cos(1). - Vaclav Kotesovec, Jun 12 2015
Previous Showing 11-20 of 50 results. Next