A109574 Chen primes p such that p is palindromic.
2, 3, 5, 7, 11, 101, 131, 181, 191, 353, 787, 797, 919, 10301, 10601, 11411, 12721, 12821, 13331, 13931, 14741, 15551, 16061, 16361, 16561, 16661, 17471, 19991, 31013, 35753, 36263, 38783, 71317, 72227, 73037, 73237, 73637, 74047, 74747
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
chenQ[n_] := PrimeQ[n] && PrimeOmega[n + 2] < 3; Select[Range[75000], chenQ[#] && PalindromeQ[#] &] (* Amiram Eldar, Oct 19 2021 *)
-
PARI
isok(p) = my(d=digits(p)); isprime(p) && (bigomega(p+2) <= 2) && (d==Vecrev(d)); \\ Michel Marcus, Oct 19 2021
Comments