cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A277919 Triangle read by rows: CL(n,k) is the number of labeled subgraphs with k edges of the n-cycle C_n.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 7, 6, 3, 1, 15, 16, 10, 4, 1, 31, 40, 30, 15, 5, 1, 63, 96, 84, 50, 21, 6, 1, 127, 224, 224, 154, 77, 28, 7, 1, 255, 512, 576, 448, 258, 112, 36, 8, 1, 511, 1152, 1440, 1248, 810, 405, 156, 45, 9, 1, 1023, 2560, 3520, 3360, 2420, 1362, 605, 210, 55, 10, 1
Offset: 0

Views

Author

John P. McSorley, Nov 03 2016

Keywords

Examples

			For row 3 of the triangle below: there are 7 labeled subgraphs of the triangle C_3 with 0 edges, 6 with 1 edge, 3 with 2 edges, and 1 with 3 edges (C_3 itself).
Triangle begins:
     1;
     1,    1;
     3,    2,    1;
     7,    6,    3,    1;
    15,   16,   10,    4,    1;
    31,   40,   30,   15,    5,    1;
    63,   96,   84,   50,   21,    6,   1;
   127,  224,  224,  154,   77,   28,   7,   1;
   255,  512,  576,  448,  258,  112,  36,   8,  1;
   511, 1152, 1440, 1248,  810,  405, 156,  45,  9,  1;
  1023, 2560, 3520, 3360, 2420, 1362, 605, 210, 55, 10, 1;
  ...
		

Crossrefs

Row sums give A005592.
Middle diagonal gives A110170.

Programs

  • PARI
    T(n)={[Vecrev(p) | p<-Vec((1 - 2*x + 2*x^2)/((1-x)*(1 - y*x - 2*x + y*x^2)) + O(x*x^n))]}
    { my(A=T(12)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Sep 27 2019

Formula

The identity CL(n,k) = 2^(n-2*k) * CL(n,n-k) can be proved combinatorially.
G.f.: (1 - 2*x + 2*x^2)/((1-x)*(1 - y*x - 2*x + y*x^2)). - Andrew Howroyd, Sep 27 2019

Extensions

More terms from John P. McSorley, Nov 17 2016

A361817 Expansion of 1/sqrt(1 - 4*x*(1-x)^4).

Original entry on oeis.org

1, 2, -2, -16, -10, 118, 304, -500, -3754, -2488, 30866, 83716, -135568, -1080972, -792876, 9090484, 25788118, -39325156, -335074520, -271779024, 2820643842, 8348113120, -11788972644, -107836934448, -96107852032, 900943403012, 2778574561276, -3596374190416
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x*(1-x)^4))

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(2*k,k) * binomial(4*k,n-k).
n*a(n) = 2 * ( (2*n-1)*a(n-1) - 4*(2*n-2)*a(n-2) + 6*(2*n-3)*a(n-3) - 4*(2*n-4)*a(n-4) + (2*n-5)*a(n-5) ) for n > 4.

A382332 Expansion of 1/(1 - 4*x/(1-x)^2)^(7/2).

Original entry on oeis.org

1, 14, 154, 1470, 12866, 106078, 837018, 6385262, 47420674, 344553902, 2458367898, 17272647966, 119770278978, 821068784382, 5572735854234, 37490757508302, 250247764120578, 1658681038111566, 10924592141535898, 71541334475749502, 466060971286552642
Offset: 0

Views

Author

Seiichi Manyama, Mar 30 2025

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( 1/(1 - 4*x/(1-x)^2)^(7/2))); // Vincenzo Librandi, May 12 2025
  • Mathematica
    Table[Sum[(-4)^k* Binomial[-7/2,k]*Binomial[n+k-1, n-k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, May 12 2025 *)
  • PARI
    a(n) = sum(k=0, n, (-4)^k*binomial(-7/2, k)*binomial(n+k-1, n-k));
    

Formula

a(0) = 1; a(n) = 2 * Sum_{k=0..n-1} (7-5*k/n) * (n-k) * a(k).
a(n) = ((7*n+7)*a(n-1) - (7*n-28)*a(n-2) + (n-3)*a(n-3))/n for n > 2.
a(n) = Sum_{k=0..n} (-4)^k * binomial(-7/2,k) * binomial(n+k-1,n-k).
a(n) = 14*n*hypergeom([9/2, 1-n, 1+n], [3/2, 2], -1) for n > 0. - Stefano Spezia, Mar 30 2025
a(n) ~ 2^(5/4) * (1 + sqrt(2))^(2*n) * n^(5/2) / (15*sqrt(Pi)). - Vaclav Kotesovec, May 03 2025

A110169 Triangle read by rows: T(n,k) (0<=k<=n) is the number of Delannoy paths of length n that start with exactly k (1,1) steps.

Original entry on oeis.org

1, 2, 1, 10, 2, 1, 50, 10, 2, 1, 258, 50, 10, 2, 1, 1362, 258, 50, 10, 2, 1, 7306, 1362, 258, 50, 10, 2, 1, 39650, 7306, 1362, 258, 50, 10, 2, 1, 217090, 39650, 7306, 1362, 258, 50, 10, 2, 1, 1196834, 217090, 39650, 7306, 1362, 258, 50, 10, 2, 1, 6634890, 1196834
Offset: 0

Views

Author

Emeric Deutsch, Jul 14 2005

Keywords

Comments

A Delannoy path of length n is a path from (0,0) to (n,n), consisting of steps E=(1,0), N=(0,1) and D=(1,1).
Row sums are the central Delannoy numbers (A001850). Column 0 yields A110170 (first differences of the central Delannoy numbers). sum(k*T(n,k),k=0..n)=A089165(n-1) (n>=1; partial sums of the central Delannoy numbers).

Examples

			T(3,2)=2 because we have DDNE and DDEN.
Triangle starts:
1;
2,1;
10,2,1;
50,10,2,1;
258,50,10,2,1;
		

Crossrefs

Programs

  • Maple
    with(orthopoly): S:=proc(n,k) if k
    				

Formula

T(n, k) = A001850(n-k)-A001850(n-k-1) for k
T(n, k) = P_{n-k}(3)-P_{n-k-1}(3) for k
G.f.: (1-z)/((1-t*z)*sqrt(1-6*z+z^2)).

Extensions

Keyword tabf changed to tabl by Michel Marcus, Apr 09 2013

A376810 Expansion of 1/sqrt(1 - 4*x/(1 - x^2)^2).

Original entry on oeis.org

1, 2, 6, 24, 94, 378, 1544, 6380, 26598, 111658, 471358, 1998924, 8509368, 36341278, 155634228, 668116136, 2874157222, 12387209982, 53475080494, 231189987224, 1000834283190, 4337864724462, 18821884379924, 81748960355484, 355383570351664, 1546239230878154
Offset: 0

Author

Seiichi Manyama, Oct 04 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1-x^2)^2))
    
  • PARI
    a(n) = sum(k=0, n\2, binomial(2*n-3*k-1, k)*binomial(2*n-4*k, n-2*k));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(2*n-3*k-1,k) * binomial(2*n-4*k,n-2*k).

A376811 Expansion of 1/sqrt(1 - 4*x/(1 - x^3)^2).

Original entry on oeis.org

1, 2, 6, 20, 74, 276, 1044, 3998, 15450, 60128, 235332, 925332, 3652508, 14464490, 57442074, 228670140, 912239782, 3646027752, 14596600800, 58523194734, 234954663396, 944418233612, 3800327339532, 15307785490560, 61716607166724, 249033637247898, 1005661821858414
Offset: 0

Author

Seiichi Manyama, Oct 04 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1-x^3)^2))
    
  • PARI
    a(n) = sum(k=0, n\3, binomial(2*n-5*k-1, k)*binomial(2*n-6*k, n-3*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-5*k-1,k) * binomial(2*n-6*k,n-3*k).

A382274 Expansion of 1/(1 - 4*x/(1-x)^2)^(5/2).

Original entry on oeis.org

1, 10, 90, 730, 5570, 40762, 289370, 2007210, 13671170, 91750250, 608294490, 3991833210, 25968131010, 167664187290, 1075453670490, 6858654320970, 43517809896450, 274862176368330, 1728960219827290, 10835520927931930, 67679638209628098, 421442759107879930
Offset: 0

Author

Seiichi Manyama, Mar 29 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-4)^k*binomial(-5/2, k)*binomial(n+k-1, n-k));

Formula

a(0) = 1; a(n) = 2 * Sum_{k=0..n-1} (5-3*k/n) * (n-k) * a(k).
a(n) = ((7*n+3)*a(n-1) - (7*n-24)*a(n-2) + (n-3)*a(n-3))/n for n > 2.
a(n) = Sum_{k=0..n} (-4)^k * binomial(-5/2,k) * binomial(n+k-1,n-k).
a(n) = 10*n*hypergeom([7/2, 1-n, 1+n], [3/2, 2], -1) for n > 0. - Stefano Spezia, Mar 30 2025
a(n) ~ 2^(3/4) * n^(3/2) * (1 + sqrt(2))^(2*n) / (3*sqrt(Pi)). - Vaclav Kotesovec, Apr 13 2025

A376809 Expansion of 1/sqrt(1 - 4*x^3/(1 - x)^2).

Original entry on oeis.org

1, 0, 0, 2, 4, 6, 14, 34, 72, 154, 346, 774, 1714, 3822, 8574, 19238, 43204, 97254, 219286, 494962, 1118502, 2530522, 5730762, 12989634, 29467718, 66901378, 151996338, 345556218, 786092266, 1789284762, 4074927962, 9284968682, 21166439112, 48273612954, 110142596298
Offset: 0

Author

Seiichi Manyama, Oct 04 2024

Keywords

Crossrefs

Partial sums are A098479.

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/sqrt(1-4*x^3/(1-x)^2))
    
  • PARI
    a(n) = sum(k=0, n\3, binomial(2*k,k) * binomial(n-k-1,n-3*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(2*k,k) * binomial(n-k-1,n-3*k).
Previous Showing 11-18 of 18 results.