cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A111534 Main diagonal of table A111528.

Original entry on oeis.org

1, 1, 4, 33, 416, 7045, 149472, 3804353, 112784896, 3812791581, 144643185600, 6081135558817, 280510445260800, 14080668974435141, 763890295406672896, 44529851124925034625, 2775373003913373810688, 184147301185264051623181
Offset: 0

Views

Author

Paul D. Hanna, Aug 06 2005

Keywords

Comments

For n>0, a(n) is divisible by n: a(n)/n = A111535(n).

Crossrefs

Cf: A111528 (table), A003319 (row 1), A111529 (row 2), A111530 (row 3), A111531 (row 4), A111532 (row 5), A111533 (row 6).

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = Which[n<0 || k<0, 0, k==0 || k==1, 1, n==0, k!, True, (T[n-1, k+1]-T[n-1, k])/n - Sum[T[n, j] T[n-1, k-j], {j, 1, k-1}]];
    a[n_] := T[n, n];
    Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Aug 09 2018 *)
  • PARI
    {a(n)=if(n<0,0,if(n==0,1, polcoeff(log(sum(m=0,n,(n-1+m)!/(n-1)!*x^m)),n)))}

Formula

a(n) = [x^n] Log( Sum_{m=0..n} (n-1+m)!/(n-1)!*x^m ).

A172455 The case S(6,-4,-1) of the family of self-convolutive recurrences studied by Martin and Kearney.

Original entry on oeis.org

1, 7, 84, 1463, 33936, 990542, 34938624, 1445713003, 68639375616, 3676366634402, 219208706540544, 14397191399702118, 1032543050697424896, 80280469685284582812, 6725557192852592984064, 603931579625379293509683
Offset: 1

Views

Author

N. J. A. Sloane, Nov 20 2010

Keywords

Examples

			G.f. = x + 7*x^2 + 84*x^3 + 1463*x^4 + 33936*x^5 + 990542*x^6 + 34938624*x^7 + ...
a(2) = 7 since (6*2 - 4) * a(2-1) - (a(1) * a(2-1)) = 7.
		

Crossrefs

Cf. A000079 S(1,1,-1), A000108 S(0,0,1), A000142 S(1,-1,0), A000244 S(2,1,-2), A000351 S(4,1,-4), A000400 S(5,1,-5), A000420 S(6,1,-6), A000698 S(2,-3,1), A001710 S(1,1,0), A001715 S(1,2,0), A001720 S(1,3,0), A001725 S(1,4,0), A001730 S(1,5,0), A003319 S(1,-2,1), A005411 S(2,-4,1), A005412 S(2,-2,1), A006012 S(-1,2,2), A006318 S(0,1,1), A047891 S(0,2,1), A049388 S(1,6,0), A051604 S(3,1,0), A051605 S(3,2,0), A051606 S(3,3,0), A051607 S(3,4,0), A051608 S(3,5,0), A051609 S(3,6,0), A051617 S(4,1,0), A051618 S(4,2,0), A051619 S(4,3,0), A051620 S(4,4,0), A051621 S(4,5,0), A051622 S(4,6,0), A051687 S(5,1,0), A051688 S(5,2,0), A051689 S(5,3,0), A051690 S(5,4,0), A051691 S(5,5,0), A053100 S(6,1,0), A053101 S(6,2,0), A053102 S(6,3,0), A053103 S(6,4,0), A053104 S(7,1,0), A053105 S(7,2,0), A053106 S(7,3,0), A062980 S(6,-8,1), A082298 S(0,3,1), A082301 S(0,4,1), A082302 S(0,5,1), A082305 S(0,6,1), A082366 S(0,7,1), A082367 S(0,8,1), A105523 S(0,-2,1), A107716 S(3,-4,1), A111529 S(1,-3,2), A111530 S(1,-4,3), A111531 S(1,-5,4), A111532 S(1,-6,5), A111533 S(1,-7,6), A111546 S(1,0,1), A111556 S(1,1,1), A143749 S(0,10,1), A146559 S(1,1,-2), A167872 S(2,-3,2), A172450 S(2,0,-1), A172485 S(-1,-2,3), A177354 S(1,2,1), A292186 S(4,-6,1), A292187 S(3, -5, 1).

Programs

  • Mathematica
    a[1] = 1; a[n_]:= a[n] = (6*n-4)*a[n-1] - Sum[a[k]*a[n-k], {k, 1, n-1}]; Table[a[n], {n, 1, 20}] (* Vaclav Kotesovec, Jan 19 2015 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (6 * k - 4) * A[k-1] - sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 24 2011 */
    
  • PARI
    S(v1, v2, v3, N=16) = {
      my(a = vector(N)); a[1] = 1;
      for (n = 2, N, a[n] = (v1*n+v2)*a[n-1] + v3*sum(j=1,n-1,a[j]*a[n-j])); a;
    };
    S(6,-4,-1)
    \\ test: y = x*Ser(S(6,-4,-1,201)); 6*x^2*y' == y^2 - (2*x-1)*y - x
    \\ Gheorghe Coserea, May 12 2017

Formula

a(n) = (6*n - 4) * a(n-1) - Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 24 2011
G.f.: x / (1 - 7*x / (1 - 5*x / (1 - 13*x / (1 - 11*x / (1 - 19*x / (1 - 17*x / ... )))))). - Michael Somos, Jan 03 2013
a(n) = 3/(2*Pi^2)*int((4*x)^((3*n-1)/2)/(Ai'(x)^2+Bi'(x)^2), x=0..inf), where Ai'(x), Bi'(x) are the derivatives of the Airy functions. [Vladimir Reshetnikov, Sep 24 2013]
a(n) ~ 6^n * (n-1)! / (2*Pi) [Martin + Kearney, 2011, p.16]. - Vaclav Kotesovec, Jan 19 2015
6*x^2*y' = y^2 - (2*x-1)*y - x, where y(x) = Sum_{n>=1} a(n)*x^n. - Gheorghe Coserea, May 12 2017
G.f.: x/(1 - 2*x - 5*x/(1 - 7*x/(1 - 11*x/(1 - 13*x/(1 - ... - (6*n - 1)*x/(1 - (6*n + 1)*x/(1 - .... Cf. A062980. - Peter Bala, May 21 2017

A111535 a(n) = A111534(n)/n = A111528(n,n)/n for n>=1.

Original entry on oeis.org

1, 2, 11, 104, 1409, 24912, 543479, 14098112, 423643509, 14464318560, 552830505347, 23375870438400, 1083128382648857, 54563592529048064, 2968656741661668975, 173460812744585863168, 10832194187368473624893
Offset: 1

Views

Author

Paul D. Hanna, Aug 06 2005

Keywords

Crossrefs

Cf: A111528 (table), A003319 (row 1), A111529 (row 2), A111530 (row 3), A111531 (row 4), A111532 (row 5), A111533 (row 6).

Programs

  • PARI
    {a(n)=if(n<1, 0, (1/n)*polcoeff(log(sum(m=0, n, (n-1+m)!/(n-1)!*x^m) + x*O(x^n)), n))}

Formula

a(n) = [x^n] (1/n)*Log( Sum_{m=0..n} (n-1+m)!/(n-1)!*x^m ) for n>=1.
a(n) ~ n! * 4^(n-1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jul 27 2015

Extensions

PARI program fixed by Vaclav Kotesovec, Jul 27 2015

A200545 Triangle T(n,k), read by rows, given by (1,0,2,1,3,2,4,3,5,4,6,5,7,6,8,7,9,8,...) DELTA (0,1,0,1,0,1,0,1,0,1,0,1,0,1,...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 13, 9, 1, 0, 1, 46, 56, 16, 1, 0, 1, 199, 334, 160, 25, 1, 0, 1, 1072, 2157, 1408, 365, 36, 1, 0, 1, 6985, 15701, 12445, 4417, 721, 49, 1, 0, 1, 53218, 129214, 116698, 50944, 11452, 1288, 64, 1, 0, 1, 462331, 1191336, 1183216, 597026, 166716, 25956, 2136, 81, 1, 0
Offset: 0

Views

Author

Philippe Deléham, Nov 19 2011

Keywords

Comments

Row sums : A000142(n) = n!.

Examples

			Triangle begins :
1
1, 0
1, 1, 0
1, 4, 1, 0
1, 13, 9, 1, 0
1, 46, 56, 16, 1, 0
1, 199, 334, 160, 25, 1, 0
1, 1072, 2157, 1408, 365, 36, 1, 0
1, 6985, 15701, 12445, 4417, 721, 49, 1, 0
1, 53218, 129214, 116698, 50944, 11452, 1288, 64, 1, 0
		

Crossrefs

Programs

  • Mathematica
    DELTA[r_, s_, m_] := Module[{p, q, t, x, y}, q[k_] := x*r[[k + 1]] + y*s[[k + 1]]; p[0, ] = 1; p[, -1] = 0; p[n_ /; n >= 1, k_ /; k >= 0] := p[n, k] = p[n, k - 1] + q[k]*p[n - 1, k + 1] // Expand; t[n_, k_] := Coefficient[p[n, 0], x^(n - k)*y^k]; t[0, 0] = p[0, 0]; Table[t[n, k], {n, 0, m}, {k, 0, n}]];
    m = 10;
    DELTA[LinearRecurrence[{1, 1, -1}, {1, 0, 2}, m], LinearRecurrence[{0, 1}, {0, 1}, m], m] // Flatten (* Jean-François Alcover, Feb 21 2019 *)

Formula

Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A172485(n+1), A146559(n), A000012(n), A000142(n), A003319(n), A111529(n), A111530(n), A111531(n), A111532(n), A111533(n) for x = -2,-1,0,1,2,3,4,5,6,7 respectively.
T(k+2,k)=(k+1)^2 = A000290(k+1).
T(n+1,1)= A014145(n).
Previous Showing 11-14 of 14 results.