A366852 Number of integer partitions of n into odd parts with a common divisor > 1.
0, 0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 2, 1, 1, 4, 0, 1, 4, 1, 2, 6, 1, 1, 6, 3, 1, 8, 2, 1, 13, 1, 0, 13, 1, 7, 15, 1, 1, 19, 6, 1, 25, 1, 2, 33, 1, 1, 32, 5, 10, 39, 2, 1, 46, 14, 6, 55, 1, 1, 77, 1, 1, 82, 0, 20, 92, 1, 2, 105, 31, 1, 122, 1, 1, 166, 2, 16, 168
Offset: 0
Keywords
Examples
The a(n) partitions for n = 3, 9, 15, 21, 25, 27: (3) (9) (15) (21) (25) (27) (3,3,3) (5,5,5) (7,7,7) (15,5,5) (9,9,9) (9,3,3) (9,9,3) (5,5,5,5,5) (15,9,3) (3,3,3,3,3) (15,3,3) (21,3,3) (9,3,3,3,3) (9,9,3,3,3) (3,3,3,3,3,3,3) (15,3,3,3,3) (9,3,3,3,3,3,3) (3,3,3,3,3,3,3,3,3)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],And@@OddQ/@#&&GCD@@#>1&]],{n,15}]
-
Python
from math import gcd from sympy.utilities.iterables import partitions def A366852(n): return sum(1 for p in partitions(n) if all(d&1 for d in p) and gcd(*p)>1) # Chai Wah Wu, Nov 02 2023
Extensions
More terms from Chai Wah Wu, Nov 02 2023
a(0)=0 prepended by Alois P. Heinz, Jan 11 2024
Comments