cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 67 results. Next

A078721 a(n) = prime(n*(n+1)/2 + 1).

Original entry on oeis.org

2, 3, 7, 17, 31, 53, 79, 109, 157, 199, 263, 331, 401, 479, 577, 661, 773, 887, 1021, 1153, 1297, 1459, 1609, 1787, 1993, 2161, 2377, 2609, 2797, 3041, 3313, 3547, 3803, 4079, 4363, 4663, 4987, 5309, 5647, 5953, 6311, 6689, 7027, 7481, 7841, 8263, 8689
Offset: 0

Views

Author

Cino Hilliard, Dec 20 2002

Keywords

Comments

Primes on the left side of the triangle formed by listing successively the prime numbers in a triangular grid:
2
3 5
7 11 13
17 19 23 29
31 37 41 43 47
53 59 61 67 71 73
The sum of the reciprocals appears to converge.
As the terms grow faster than the triangular numbers and the sum of inverse numbers converges, the sum of inverses indeed converges. - Joerg Arndt, Oct 28 2015
When arranged as a rectangular array, every row eventually intersperses every other row and every column eventually intersperses every other column; see example. - Clark Kimberling, Apr 13 2025

Examples

			    2     3     7    17    31    53    79   109   157   199
    5    11    19    37    59    83   113   163   211   269
   13    23    41    61    89   127   167   223   271   347
   29    43    67    97   131   173   227   277   349   421
   47    71   101   137   179   229   281   353   431   503
   73   103   139   181   233   283   359   433   509   607
  107   149   191   239   293   367   439   521   613   709
  151   193   241   307   373   443   523   617   719   827
  197   251   311   379   449   541   619   727   829   953
  257   313   383   457   547   631   733   839   967  1087
Interspersion of rows 3 and 5 begins with
  41  61  89  127...
    43  67  97...
Interspersion of columns 3 and 5 begins with
  19
    31
  41
    59
  67
    89
		

Crossrefs

Programs

  • Magma
    [NthPrime(n*(n + 1) div 2+1): n in [0..50]]; // Vincenzo Librandi, Jun 08 2016
  • Mathematica
    Table[Prime[n (n + 1)/2 + 1], {n, 0, 46}] (* Michael De Vlieger, Oct 28 2015 *)
    Prime[#]&/@(Accumulate[Range[0,50]]+1) (* Harvey P. Dale, Aug 04 2018 *)
    Grid[Table[Prime[n + (n + k - 2) (n + k - 1)/2], {n, 1, 20}, {k, 1, 15}]]
    (* Clark Kimberling, Apr 13 2025 *)
  • PARI
    a(n) = prime(n*(n+1)/2 + 1);
    

Formula

a(n) = A000040(A000124(n)). - Altug Alkan, Oct 28 2015
a(n) = A151800(A011756(n)) for n >= 1. - Amiram Eldar, Sep 05 2024

A191452 Dispersion of (4,8,12,16,...), by antidiagonals.

Original entry on oeis.org

1, 4, 2, 16, 8, 3, 64, 32, 12, 5, 256, 128, 48, 20, 6, 1024, 512, 192, 80, 24, 7, 4096, 2048, 768, 320, 96, 28, 9, 16384, 8192, 3072, 1280, 384, 112, 36, 10, 65536, 32768, 12288, 5120, 1536, 448, 144, 40, 11, 262144, 131072, 49152, 20480, 6144, 1792, 576
Offset: 1

Views

Author

Clark Kimberling, Jun 05 2011

Keywords

Comments

Background discussion: Suppose that s is an increasing sequence of positive integers, that the complement t of s is infinite, and that t(1)=1. The dispersion of s is the array D whose n-th row is (t(n), s(t(n)), s(s(t(n))), s(s(s(t(n)))), ...). Every positive integer occurs exactly once in D, so that, as a sequence, D is a permutation of the positive integers. The sequence u given by u(n)=(number of the row of D that contains n) is a fractal sequence. Examples:
(1) s=A000040 (the primes), D=A114537, u=A114538.
(2) s=A022343 (without initial 0), D=A035513 (Wythoff array), u=A003603.
(3) s=A007067, D=A035506 (Stolarsky array), u=A133299.
More recent examples of dispersions: A191426-A191455.

Examples

			Northwest corner:
  1...4....16...64....256
  2...8....32...128...512
  3...12...48...192...768
  5...20...80...320...1280
  6...24...96...384...1536
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array T of increasing sequence f[n] *)
    r=40; r1=12; c=40; c1=12;
    f[n_] :=4n  (* complement of column 1 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]]
    (* A191452 array *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191452 sequence *)
    (* Program by Peter J. C. Moses, Jun 01 2011 *)

A254105 Dispersion of A055938; starting from its complementary sequence A005187 as the first column of square array A(row,col), read by antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Original entry on oeis.org

1, 2, 3, 5, 6, 4, 12, 13, 9, 7, 27, 28, 20, 14, 8, 58, 59, 43, 29, 17, 10, 121, 122, 90, 60, 36, 21, 11, 248, 249, 185, 123, 75, 44, 24, 15, 503, 504, 376, 250, 154, 91, 51, 30, 16, 1014, 1015, 759, 505, 313, 186, 106, 61, 33, 18, 2037, 2038, 1526, 1016, 632, 377, 217, 124, 68, 37, 19, 4084, 4085, 3061, 2039, 1271, 760, 440, 251, 139, 76, 40, 22
Offset: 1

Views

Author

Antti Karttunen, Jan 26 2015

Keywords

Comments

This sequence is one instance of Clark Kimberling's generic dispersion arrays. Paraphrasing his explanation in A191450, mutatis mutandis, we have the following definition:
Suppose that s is an increasing sequence of positive integers, that the complement t of s is infinite, and that t(1)=1. The dispersion of s is the array D whose n-th row is (t(n), s(t(n)), s(s(t(n))), s(s(s(t(n)))), ...). Every positive integer occurs exactly once in D, so that, as a sequence, D is a permutation of the positive integers. The sequence u given by u(n) = {index of the row of D that contains n} is a fractal sequence. In this case s(n) = A055938(n), t(n) = A005187(n) [from term A005187(1) onward] and u(n) = A254112(n).
For other examples of such sequences, see the Crossrefs section. For a general introduction, please follow the Kimberling references.
The main diagonal: 1, 6, 20, 60, 154, 377, 887, 2040, 4598, 10229, 22515, 49139, ...

Examples

			The top left corner of the array:
   1,  2,  5,  12,  27,  58,  121,  248,  503,  1014,  2037,  4084
   3,  6, 13,  28,  59, 122,  249,  504, 1015,  2038,  4085,  8180
   4,  9, 20,  43,  90, 185,  376,  759, 1526,  3061,  6132, 12275
   7, 14, 29,  60, 123, 250,  505, 1016, 2039,  4086,  8181, 16372
   8, 17, 36,  75, 154, 313,  632, 1271, 2550,  5109, 10228, 20467
  10, 21, 44,  91, 186, 377,  760, 1527, 3062,  6133, 12276, 24563
  11, 24, 51, 106, 217, 440,  887, 1782, 3573,  7156, 14323, 28658
  15, 30, 61, 124, 251, 506, 1017, 2040, 4087,  8182, 16373, 32756
  16, 33, 68, 139, 282, 569, 1144, 2295, 4598,  9205, 18420, 36851
  18, 37, 76, 155, 314, 633, 1272, 2551, 5110, 10229, 20468, 40947
etc.
		

Crossrefs

Inverse: A254106.
Transpose: A254107.
Column 1: A005187.
Cf. also A000325, A095768, A123720 (Seem to be rows 1 - 3, the last one from its second term onward.)
Columnd index of n: A254111, Row index: A254112.
Examples of other arrays of dispersions: A114537, A035513, A035506, A191449, A191450, A191426-A191455.

Programs

Formula

If col = 1, then A(row,col) = A005187(row), otherwise A(row,col) = A055938(A(row,col-1)).

A256995 Square array A(row,col) read by antidiagonals: A(row,1) = A055938(row), and for col > 1, A(row,col) = A005187(A(row,col-1)).

Original entry on oeis.org

2, 3, 5, 4, 8, 6, 7, 15, 10, 9, 11, 26, 18, 16, 12, 19, 49, 34, 31, 22, 13, 35, 95, 66, 57, 41, 23, 14, 67, 184, 130, 110, 79, 42, 25, 17, 131, 364, 258, 215, 153, 81, 47, 32, 20, 259, 723, 514, 424, 302, 159, 89, 63, 38, 21, 515, 1440, 1026, 844, 599, 312, 174, 120, 73, 39, 24, 1027, 2876, 2050, 1683, 1192, 620, 343, 236, 143, 74, 46, 27
Offset: 2

Views

Author

Antti Karttunen, Apr 14 2015

Keywords

Comments

The array is read by antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
This is transpose of array A256997.
If we assume that a(1) = 1 (but which is not explicitly included here because outside of the array proper), then A256996 gives the inverse permutation.

Examples

			The top left corner of the array:
   2,  3,  4,   7,  11,  19,   35,   67,  131,  259,   515,  1027
   5,  8, 15,  26,  49,  95,  184,  364,  723, 1440,  2876,  5745
   6, 10, 18,  34,  66, 130,  258,  514, 1026, 2050,  4098,  8194
   9, 16, 31,  57, 110, 215,  424,  844, 1683, 3360,  6716, 13425
  12, 22, 41,  79, 153, 302,  599, 1192, 2380, 4755,  9504, 19004
  13, 23, 42,  81, 159, 312,  620, 1235, 2464, 4924,  9841, 19675
  14, 25, 47,  89, 174, 343,  680, 1356, 2707, 5408, 10812, 21617
  17, 32, 63, 120, 236, 467,  928, 1852, 3697, 7387, 14765, 29521
  20, 38, 73, 143, 281, 558, 1111, 2216, 4428, 8851, 17696, 35388
  21, 39, 74, 145, 287, 568, 1132, 2259, 4512, 9020, 18033, 36059
  ...
		

Crossrefs

Inverse permutation: A256996.
Transpose: A256997.
Cf. A005187, A055938 (column 1), A256994 (row 1), A256989 (column index), A256990 (row index).
Cf. also A254105, A255555 (variants), A114537, A246279 (other thematically similar constructions).

Programs

Formula

A(row,1) = A055938(row), and for col > 1, A(row,col) = A005187(A(row,col-1)).

A114577 Dispersion of the composite numbers.

Original entry on oeis.org

1, 4, 2, 9, 6, 3, 16, 12, 8, 5, 26, 21, 15, 10, 7, 39, 33, 25, 18, 14, 11, 56, 49, 38, 28, 24, 20, 13, 78, 69, 55, 42, 36, 32, 22, 17, 106, 94, 77, 60, 52, 48, 34, 27, 19, 141, 125, 105, 84, 74, 68, 50, 40, 30, 23, 184, 164, 140, 115, 100, 93, 70, 57, 45, 35, 29, 236, 212, 183
Offset: 1

Views

Author

Clark Kimberling, Dec 09 2005

Keywords

Comments

Column 1 consists of 1 and the primes. As a sequence, this is a permutation of the positive integers. As an array, its fractal sequence is A022446 and its transposition sequence is A114578.
The dispersion of the primes is given at A114537.

Examples

			Northwest corner:
1   4   9   16  26  39  56   78
2   6   12  21  33  49  69   94
3   8   15  25  38  55  77   105
5   10  18  28  42  60  84   115
7   14  24  36  52  74  100  133
11  20  32  48  68  93  124  162
		

References

  • Clark Kimberling, Fractal sequences and interspersions, Ars Combinatoria 45 (1997) 157-168.

Crossrefs

Programs

  • Mathematica
    (* Program computes dispersion array T of increasing sequence s[n] and the fractal sequence f of T; here, T = dispersion of the composite numbers, A114577 *)
    r = 40; r1 = 10;(* r = # rows of T, r1 = # rows to show*);
    c = 40; c1 = 12;(* c = # cols of T, c1 = # cols to show*);
    comp = Select[Range[2, 100000], ! PrimeQ[#] &];
    s[n_] := s[n] = comp[[n]]; mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]; rows = {NestList[s, 1, c]}; Do[rows = Append[rows, NestList[s, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, r1}, {j, 1, c1}]] (* A114577 array *)
    u = Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A114577 sequence *)
    row[i_] := row[i] = Table[t[i, j], {j, 1, c}];
    f[n_] := Select[Range[r], MemberQ[row[#], n] &]
    v = Flatten[Table[f[n], {n, 1, 100}]]  (* A022446, fractal sequence *)
    (* - Clark Kimberling, Oct 09 2014 *)

A191449 Dispersion of (3,6,9,12,15,...), by antidiagonals.

Original entry on oeis.org

1, 3, 2, 9, 6, 4, 27, 18, 12, 5, 81, 54, 36, 15, 7, 243, 162, 108, 45, 21, 8, 729, 486, 324, 135, 63, 24, 10, 2187, 1458, 972, 405, 189, 72, 30, 11, 6561, 4374, 2916, 1215, 567, 216, 90, 33, 13, 19683, 13122, 8748, 3645, 1701, 648, 270, 99, 39, 14, 59049
Offset: 1

Views

Author

Clark Kimberling, Jun 05 2011

Keywords

Comments

Transpose of A141396.
Background discussion: Suppose that s is an increasing sequence of positive integers, that the complement t of s is infinite, and that t(1)=1. The dispersion of s is the array D whose n-th row is (t(n), s(t(n)), s(s(t(n))), s(s(s(t(n)))), ...). Every positive integer occurs exactly once in D, so that, as a sequence, D is a permutation of the positive integers. The sequence u given by u(n)=(number of the row of D that contains n) is a fractal sequence. Examples:
(1) s=A000040 (the primes), D=A114537, u=A114538.
(2) s=A022343 (without initial 0), D=A035513 (Wythoff array), u=A003603.
(3) s=A007067, D=A035506 (Stolarsky array), u=A133299.
More recent examples of dispersions: A191426-A191455.

Examples

			Northwest corner:
  1...3....9....27...81
  2...6....18...54...162
  4...12...36...108..324
  5...15...45...135..405
  7...21...63...189..567
		

Crossrefs

A054582: dispersion of (2,4,6,8,...).
A191450: dispersion of (2,5,8,11,...).
A191451: dispersion of (4,7,10,13,...).
A191452: dispersion of (4,8,12,16,...).

Programs

  • Mathematica
    (* Program generates the dispersion array T of increasing sequence f[n] *)
    r=40; r1=12; c=40; c1=12;
    f[n_] :=3n (* complement of column 1 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]]
    (* A191449 array *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191449 sequence *)
    (* Program by Peter J. C. Moses, Jun 01 2011 *)

Formula

T(i,j)=T(i,1)*T(1,j)=floor((3i-1)/2)*3^(j-1).

A191448 Dispersion of the odd integers greater than 1, by antidiagonals.

Original entry on oeis.org

1, 3, 2, 7, 5, 4, 15, 11, 9, 6, 31, 23, 19, 13, 8, 63, 47, 39, 27, 17, 10, 127, 95, 79, 55, 35, 21, 12, 255, 191, 159, 111, 71, 43, 25, 14, 511, 383, 319, 223, 143, 87, 51, 29, 16, 1023, 767, 639, 447, 287, 175, 103, 59, 33, 18, 2047, 1535, 1279, 895, 575
Offset: 1

Views

Author

Clark Kimberling, Jun 05 2011

Keywords

Comments

Background discussion: Suppose that s is an increasing sequence of positive integers, that the complement t of s is infinite, and that t(1)=1. The dispersion of s is the array D whose n-th row is (t(n), s(t(n)), s(s(t(n))), s(s(s(t(n)))), ...). Every positive integer occurs exactly once in D, so that, as a sequence, D is a permutation of the positive integers. The sequence u given by u(n)=(number of the row of D that contains n) is a fractal sequence. Examples:
(1) s=A000040 (the primes), D=A114537, u=A114538.
(2) s=A022343 (without initial 0), D=A035513 (Wythoff array), u=A003603.
(3) s=A007067, D=A035506 (Stolarsky array), u=A133299.
More recent examples of dispersions: A191426-A191455.

Examples

			Northwest corner:
  1...3...7...15..31
  2...5...11..23..47
  4...9...19..39..79
  6...13..27..55..111
  8...17..35..71..143
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array T of increasing sequence f[n] *)
    r=40; r1=12; c=40; c1=12;
    f[n_] :=2n+1 (* complement of column 1 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]]
    (* A191448 array *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191448 sequence *)
    (* Program by Peter J. C. Moses, Jun 01 2011 *)

A191545 Dispersion of (floor(9*n/4)), by antidiagonals.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 9, 13, 11, 7, 20, 29, 24, 15, 8, 45, 65, 54, 33, 18, 10, 101, 146, 121, 74, 40, 22, 12, 227, 328, 272, 166, 90, 49, 27, 14, 510, 738, 612, 373, 202, 110, 60, 31, 16, 1147, 1660, 1377, 839, 454, 247, 135, 69, 36, 17, 2580, 3735, 3098, 1887
Offset: 1

Views

Author

Clark Kimberling, Jun 09 2011

Keywords

Comments

Background discussion: Suppose that s is an increasing sequence of positive integers, that the complement t of s is infinite, and that t(1)=1. The dispersion of s is the array D whose n-th row is (t(n), s(t(n)), s(s(t(n))), s(s(s(t(n)))), ...). Every positive integer occurs exactly once in D, so that, as a sequence, D is a permutation of the positive integers. The sequence u given by u(n)=(number of the row of D that contains n) is a fractal sequence. Examples:
(1) s=A000040 (the primes), D=A114537, u=A114538.
(2) s=A022343 (without initial 0), D=A035513 (Wythoff array), u=A003603.
(3) s=A007067, D=A035506 (Stolarsky array), u=A133299.
More recent examples of dispersions: A191426-A191455.

Examples

			Northwest corner:
  1   2    4    9    20
  3   6    13   29   65
  5   11   25   54   121
  7   15   33   74   166
  8   18   40   90   202
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array T of the complement of increasing sequence f[n] *)
    r=40; r1=12; c=40; c1=12; f[n_] := Floor[9n/4]   (* complement of column 1 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]]
    (* A191545 array *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191545 sequence *)
    (* Program by Peter J. C. Moses, Jun 01 2011 *)

A191438 Dispersion of ([n*sqrt(2)+n]), where [ ]=floor, by antidiagonals.

Original entry on oeis.org

1, 2, 3, 4, 7, 5, 9, 16, 12, 6, 21, 38, 28, 14, 8, 50, 91, 67, 33, 19, 10, 120, 219, 161, 79, 45, 24, 11, 289, 528, 388, 190, 108, 57, 26, 13, 697, 1274, 936, 458, 260, 137, 62, 31, 15, 1682, 3075, 2259, 1105, 627, 330, 149, 74, 36, 17, 4060, 7423, 5453
Offset: 1

Views

Author

Clark Kimberling, Jun 04 2011

Keywords

Comments

Background discussion: Suppose that s is an increasing sequence of positive integers, that the complement t of s is infinite, and that t(1)=1. The dispersion of s is the array D whose n-th row is (t(n), s(t(n)), s(s(t(n))), s(s(s(t(n)))), ...). Every positive integer occurs exactly once in D, so that, as a sequence, D is a permutation of the positive integers. The sequence u given by u(n)=(number of the row of D that contains n) is a fractal sequence. Examples:
(1) s=A000040 (the primes), D=A114537, u=A114538.
(2) s=A022343 (without initial 0), D=A035513 (Wythoff array), u=A003603.
(3) s=A007067, D=A035506 (Stolarsky array), u=A133299.
More recent examples of dispersions: A191426-A191455.

Examples

			Northwest corner:
  1....2....4....9....21
  3....7....16...38...91
  5....12...28...67...161
  6....14...33...79...190
  8....19...45...108..260
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array T of increasing sequence f[n] *)
    r=40; r1=12; c=40; c1=12;  x = Sqr[2];
    f[n_] := Floor[n*x+n] (* complement of column 1 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]]
    (* A191438 array *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191438 sequence *)
    (* Program by Peter J. C. Moses, Jun 01 2011 *)

A191536 Dispersion of (3+floor(n*sqrt(2))), by antidiagonals.

Original entry on oeis.org

1, 4, 2, 8, 5, 3, 14, 10, 7, 6, 22, 17, 12, 11, 9, 34, 27, 19, 18, 15, 13, 51, 41, 29, 28, 24, 21, 16, 75, 60, 44, 42, 36, 32, 25, 20, 109, 87, 65, 62, 53, 48, 38, 31, 23, 157, 126, 94, 90, 77, 70, 56, 46, 35, 26, 225, 181, 135, 130, 111, 101, 82, 68, 52, 39
Offset: 1

Views

Author

Clark Kimberling, Jun 06 2011

Keywords

Comments

Background discussion: Suppose that s is an increasing sequence of positive integers, that the complement t of s is infinite, and that t(1)=1. The dispersion of s is the array D whose n-th row is (t(n), s(t(n)), s(s(t(n))), s(s(s(t(n)))), ...). Every positive integer occurs exactly once in D, so that, as a sequence, D is a permutation of the positive integers. The sequence u given by u(n)=(number of the row of D that contains n) is a fractal sequence. Examples:
(1) s=A000040 (the primes), D=A114537, u=A114538.
(2) s=A022343 (without initial 0), D=A035513 (Wythoff array), u=A003603.
(3) s=A007067, D=A035506 (Stolarsky array), u=A133299.
More recent examples of dispersions: A191426-A191455 and A191536-A191545.

Examples

			Northwest corner:
  1...4....8....14...22
  2...5....10...17...27
  3...7....12...19...29
  6...11...18...28...42
  9...15...24...36...54
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array T of the increasing sequence f[n] *)
    r=40; r1=12; c=40; c1=12; f[n_] :=3+Floor[n*Sqrt[2]]   (* complement of column 1 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, r1}, {j, 1, c1}]]
    (* A191536 array *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191536 sequence *)
    (* Program by Peter J. C. Moses, Jun 01 2011 *)
Previous Showing 11-20 of 67 results. Next