cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A115292 Correlation triangle for (1+x)^3/(1-x).

Original entry on oeis.org

1, 4, 4, 7, 17, 7, 8, 32, 32, 8, 8, 39, 66, 39, 8, 8, 40, 88, 88, 40, 8, 8, 40, 95, 130, 95, 40, 8, 8, 40, 96, 152, 152, 96, 40, 8, 8, 40, 96, 159, 194, 159, 96, 40, 8, 8, 40, 96, 160, 216, 216, 160, 96, 40, 8, 8, 40, 96, 160, 223, 258, 223, 160, 96, 40, 8
Offset: 0

Views

Author

Paul Barry, Jan 19 2006

Keywords

Comments

Row sums are A115293. Diagonal sums are A115294. T(2n,n) is A115295. T(2n,n)-T(2n,n+1) is 1,10,27,35,35,35,... The transform of (-1)^n by this matrix is 1,0,-3,0,4,0,-4,0,4,...

Examples

			Triangle begins
1;
4, 4;
7, 17, 7;
8, 32, 32, 8;
8, 39, 66, 39, 8;
8, 40, 88, 88, 40, 8;
8, 40, 95, 130, 95, 40, 8;
8, 40, 96, 152, 152, 96, 40, 8;
		

Formula

G.f.: (1+x)^3*(1+xy)^3/((1-x)(1-x*y)(1-x^2*y)); Number triangle T(n, k)=sum{j=0..n, [j<=k]*A115291(k-j)*[j<=n-k]*A115291(n-k-j)}.

A115293 Row sums of correlation triangle for (1+x)^3/(1-x).

Original entry on oeis.org

1, 8, 31, 80, 160, 272, 416, 592, 800, 1040, 1312, 1616, 1952, 2320, 2720, 3152, 3616, 4112, 4640, 5200, 5792, 6416, 7072, 7760, 8480, 9232, 10016, 10832, 11680, 12560, 13472, 14416, 15392, 16400, 17440, 18512, 19616, 20752, 21920, 23120, 24352
Offset: 0

Views

Author

Paul Barry, Jan 19 2006

Keywords

Comments

Row sums of number triangle A115292.
If Y_i (i=1,2,3,4,5) are 2-blocks of a (n+5)-set X then a(n-2) is the number of 7-subsets of X intersecting each Y_i (i=1,2,3,4,5). - Milan Janjic, Oct 28 2007

Crossrefs

Programs

  • Maple
    seq(add(binomial(5,n-k)*binomial(k+2,k), k = 0..n), n = 0..40); # Peter Bala, Sep 26 2021
  • Mathematica
    LinearRecurrence[{3,-3,1},{1,8,31,80,160,272},50] (* Harvey P. Dale, Dec 03 2018 *)
  • PARI
    a(n) = sum(k = 0, n, binomial(5,n-k)*binomial(k+2,k)); \\ Michel Marcus, Oct 01 2021

Formula

G.f.: A(x) = (1+x)^5/(1-x)^3.
a(n) = Sum_{k = 0..n} Sum_{j = 0..n} [j<=k]*A115291(k-j)*[j<=n-k]*A115291(n-k-j).
From Peter Bala, Sep 26 2021: (Start)
a(n) = Sum_{k = 0..n} binomial(5,n-k)*binomial(k+2,k).
A262732(n) = [x^n] A(x)^n. (End)

A115294 Diagonal sums of correlation triangle for (1+x)^3/(1-x).

Original entry on oeis.org

1, 4, 11, 25, 47, 79, 122, 175, 239, 314, 399, 495, 602, 719, 847, 986, 1135, 1295, 1466, 1647, 1839, 2042, 2255, 2479, 2714, 2959, 3215, 3482, 3759, 4047, 4346, 4655, 4975, 5306, 5647, 5999, 6362, 6735, 7119, 7514, 7919, 8335, 8762, 9199, 9647, 10106
Offset: 0

Views

Author

Paul Barry, Jan 19 2006

Keywords

Comments

Diagonal sums of number triangle A115292.

Programs

  • Mathematica
    LinearRecurrence[{2,-1,1,-2,1},{1,4,11,25,47,79,122,175,239},50] (* Harvey P. Dale, Jun 11 2017 *)

Formula

G.f.: (1+x)^2*(1+x^2)^3/((1-x)^2*(1-x^3)); a(n)=sum{k=0..floor(n/2), sum{j=0..n-k, [j<=k]*A115291(k-j)*[j<=n-2k]*A115291(n-2k-j)}}.

A122431 Riordan array ((1+x)^3,x).

Original entry on oeis.org

1, 3, 1, 3, 3, 1, 1, 3, 3, 1, 0, 1, 3, 3, 1, 0, 0, 1, 3, 3, 1, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Paul Barry, Sep 04 2006

Keywords

Comments

Row sums are A115291. Diagonal sums are A113311. Inverse is A122432. Sequence array for C(3,n).

Examples

			Triangle begins
1,
3,1,
3,3,1,
1,3,3,1,
0,1,3,3,1,
0,0,1,3,3,1,
0,0,0,1,3,3,1,
0,0,0,0,1,3,3,1
		

Formula

Number triangle T(n,k)=C(3,n-k)

A171445 Expansion of g.f. (1+z)^(24)/(1-z).

Original entry on oeis.org

1, 25, 301, 2325, 12951, 55455, 190051, 536155, 1271626, 2579130, 4540386, 7036530, 9740686, 12236830, 14198086, 15505590, 16241061, 16587165, 16721761, 16764265, 16774891, 16776915, 16777191, 16777215, 16777216, 16777216
Offset: 0

Views

Author

Richard Choulet, Dec 09 2009

Keywords

Comments

a(n)=2^(24)=16777216 for n>=24. We observe that this sequence is the transform of A171443 by the iterated T^(16) of T such that: T(u_0,u_1,u_2,u_3,u_4,u_5,...)=(u_0,u_0+u_1,u_1+u_2,u_2+u_3,u_3+u_4,...).

Examples

			a(3) = C(25,3)+C(25,3-2) = 2325.
		

Crossrefs

Programs

  • Maple
    m:=25:for n from 0 to 40 do a(n):=sum('binomial(m,n-2*k)',k=0..floor(n/2)): od : seq(a(n),n=0..40);
  • Mathematica
    CoefficientList[Series[(1+x)^24/(1-x),{x,0,30}],x] (* Harvey P. Dale, Jun 11 2019 *)

Formula

With m=25, a(n) = Sum_{k=0..floor(n/2)} binomial(m,n-2*k).

A296817 Expansion of 1/Sum_{k>=0} (2*k+1)^2*x^k.

Original entry on oeis.org

1, -9, 56, -328, 1912, -11144, 64952, -378568, 2206456, -12860168, 74954552, -436867144, 2546248312, -14840622728, 86497488056, -504144305608, 2938368345592, -17126065767944, 99818026262072, -581782091804488, 3390874524564856, -19763465055584648
Offset: 0

Views

Author

Seiichi Manyama, Dec 21 2017

Keywords

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({a(n) = -6 * a(n-1) - a(n-2), a(0)=1, a(1)=-9, a(2)=56, a(3)=-328},a(n),remember):
    map(f, [$0..50]); # Robert Israel, Dec 21 2017
  • Mathematica
    CoefficientList[Series[1/Sum[(2*k+1)^2*x^k, {k, 0, 30}], {x, 0, 30}], x] (* Vaclav Kotesovec, Dec 21 2017 *)
    f[n_] := Simplify[ 4*(-1)^n*((Sqrt[2] +1)^(2n -1) - (Sqrt[2] -1)^(2n -1))]; f[0] = 1; f[1] = -9; Array[f, 22, 0] (* or *)
    CoefficientList[ Series[-(x^3 -3x^2 +3x -1)/(x^2 +6x +1), {x, 0, 21}], x] (* or *)
    Join[{1, -9}, LinearRecurrence[{-6, -1}, {56, -328}, 20]] (* Robert G. Wilson v, Dec 21 2017 *)
  • PARI
    N=66; x='x+O('x^N); Vec(1/sum(k=0, N, (2*k+1)^2*x^k))

Formula

a(n) = -6 * a(n-1) - a(n-2) for n > 3.
For n > 1, a(n) = 4*(-1)^n * ((sqrt(2)+1)^(2*n-1) - (sqrt(2)-1)^(2*n-1)). - Vaclav Kotesovec, Dec 21 2017
G.f.: (1-x)^3/(1+6*x+x^2). - Robert Israel, Dec 21 2017
a(n) = 8*A002315(n-1), n>1. - R. J. Mathar, Jan 27 2020
Previous Showing 11-16 of 16 results.