cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A115291 Expansion of (1+x)^3/(1-x).

Original entry on oeis.org

1, 4, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 0

Views

Author

Paul Barry, Jan 19 2006

Keywords

Comments

Partial sums are A086570. Partial sums of squares are A115295. Correlation triangle is A115292.
Let m=4. We observe that a(n) = Sum_{k=0..floor(n/2)} C(m,n-2*k). Then there is a link with A113311 and A040000: it is the same formula with respectively m=3 and m=2. We can generalize this result with the sequence whose G.f is given by (1+z)^(m-1)/(1-z). - Richard Choulet, Dec 08 2009
Also continued fraction expansion of (132-sqrt(17))/103. - Bruno Berselli, Sep 23 2011
Also decimal expansion of 1331/9000. - Vincenzo Librandi, Sep 23 2011

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+x)^3/(1-x),{x,0,100}],x] (* or *) PadRight[ {1,4,7},120,{8}] (* Harvey P. Dale, May 23 2016 *)

Formula

a(n) = 8 - C(2, n) - 2*C(1, n) - 4*C(0, n).
a(n) = Sum_{k=0..n} C(3, k).
a(n) = A004070(n, 3).
From Elmo R. Oliveira, Aug 09 2024: (Start)
E.g.f.: 8*exp(x) - 7 - 4*x - x^2/2.
a(n) = 8, n > 2. (End)

A115293 Row sums of correlation triangle for (1+x)^3/(1-x).

Original entry on oeis.org

1, 8, 31, 80, 160, 272, 416, 592, 800, 1040, 1312, 1616, 1952, 2320, 2720, 3152, 3616, 4112, 4640, 5200, 5792, 6416, 7072, 7760, 8480, 9232, 10016, 10832, 11680, 12560, 13472, 14416, 15392, 16400, 17440, 18512, 19616, 20752, 21920, 23120, 24352
Offset: 0

Views

Author

Paul Barry, Jan 19 2006

Keywords

Comments

Row sums of number triangle A115292.
If Y_i (i=1,2,3,4,5) are 2-blocks of a (n+5)-set X then a(n-2) is the number of 7-subsets of X intersecting each Y_i (i=1,2,3,4,5). - Milan Janjic, Oct 28 2007

Crossrefs

Programs

  • Maple
    seq(add(binomial(5,n-k)*binomial(k+2,k), k = 0..n), n = 0..40); # Peter Bala, Sep 26 2021
  • Mathematica
    LinearRecurrence[{3,-3,1},{1,8,31,80,160,272},50] (* Harvey P. Dale, Dec 03 2018 *)
  • PARI
    a(n) = sum(k = 0, n, binomial(5,n-k)*binomial(k+2,k)); \\ Michel Marcus, Oct 01 2021

Formula

G.f.: A(x) = (1+x)^5/(1-x)^3.
a(n) = Sum_{k = 0..n} Sum_{j = 0..n} [j<=k]*A115291(k-j)*[j<=n-k]*A115291(n-k-j).
From Peter Bala, Sep 26 2021: (Start)
a(n) = Sum_{k = 0..n} binomial(5,n-k)*binomial(k+2,k).
A262732(n) = [x^n] A(x)^n. (End)

A115295 Partial sums of squares of A115291(n).

Original entry on oeis.org

1, 17, 66, 130, 194, 258, 322, 386, 450, 514, 578, 642, 706, 770, 834, 898, 962, 1026, 1090, 1154, 1218, 1282, 1346, 1410, 1474, 1538, 1602, 1666, 1730, 1794, 1858, 1922, 1986, 2050, 2114, 2178, 2242, 2306, 2370, 2434, 2498, 2562, 2626, 2690, 2754, 2818
Offset: 0

Views

Author

Paul Barry, Jan 19 2006

Keywords

Comments

Central coefficients of number triangle A115292.

Programs

Formula

a(n)=sum{k=0..n, (sum{j=0..k, C(3, j)})^2}; a(n)=A115292(2n, n).

A115294 Diagonal sums of correlation triangle for (1+x)^3/(1-x).

Original entry on oeis.org

1, 4, 11, 25, 47, 79, 122, 175, 239, 314, 399, 495, 602, 719, 847, 986, 1135, 1295, 1466, 1647, 1839, 2042, 2255, 2479, 2714, 2959, 3215, 3482, 3759, 4047, 4346, 4655, 4975, 5306, 5647, 5999, 6362, 6735, 7119, 7514, 7919, 8335, 8762, 9199, 9647, 10106
Offset: 0

Views

Author

Paul Barry, Jan 19 2006

Keywords

Comments

Diagonal sums of number triangle A115292.

Programs

  • Mathematica
    LinearRecurrence[{2,-1,1,-2,1},{1,4,11,25,47,79,122,175,239},50] (* Harvey P. Dale, Jun 11 2017 *)

Formula

G.f.: (1+x)^2*(1+x^2)^3/((1-x)^2*(1-x^3)); a(n)=sum{k=0..floor(n/2), sum{j=0..n-k, [j<=k]*A115291(k-j)*[j<=n-2k]*A115291(n-2k-j)}}.
Showing 1-4 of 4 results.