cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A109055 To compute a(n) we first write down 3^n 1's in a row. Each row takes the rightmost 3rd part of the previous row and each element in it equals sum of the elements of the previous row starting with the first of the rightmost 3rd part. The single element in the last row is a(n).

Original entry on oeis.org

1, 1, 3, 24, 541, 35649, 6979689, 4085743032, 7166723910237, 37698139930450365, 594816080266215640710, 28154472624850002001979592, 3997853576535778666975681355079, 1703042427700923785323670557504832751, 2176429411666209822350337722381643148477248
Offset: 0

Views

Author

Augustine O. Munagi, Jun 17 2005

Keywords

Comments

Comment from Franklin T. Adams-Watters, Jul 13 2006: This is the number of subpartitions of the sequence 3^n-1. As such it can also be computed adding forward, with 3^n terms in the n-th line:
1...........................................................................
1.1 1.......................................................................
1.2.3.3..3..3..3..3..3......................................................
1.3.6.9.12.15.18.21.24.24.24.24.24.24.24.24.24.24.24.24.24.24.24.24.24.24.24

Examples

			For example, for n=3 the array looks like this:
1..1..1..1..1........1..1..1..1..1..1..1..1..1..1
........................1..2..3..4..5..6..7..8..9
..........................................7.15.24
...............................................24
Therefore a(3)=24.
		

Crossrefs

Programs

  • Maple
    proc(n::nonnegint) local f,a; if n=0 or n=1 then return 1; end if; f:=L->[seq(add(L[i],i=2*nops(L)/3+1..j),j=2*nops(L)/3+1..nops(L))]; a:=f([seq(1,j=1..3^n)]); while nops(a)>3 do a:=f(a) end do; a[3]; end proc;
  • Mathematica
    A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[A[j, k]*(-1)^(n - j)*Binomial[If[j == 0, 1, k^j], n - j], {j, 0, n - 1}]];
    a[n_] := A[n, 3];
    Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A355576 *)

Extensions

More terms from Paul D. Hanna

A177450 G.f.: Sum_{n>=0} a(n)*x^n/(1+x)^(n^2+n) = 1+x.

Original entry on oeis.org

1, 1, 2, 9, 70, 805, 12480, 245847, 5909338, 168310515, 5556486450, 209003251240, 8835266400450, 415094928861530, 21473740362658640, 1213683089969940075, 74446121738526773490, 4927385997649620215895, 350145746700442604768346
Offset: 0

Views

Author

Paul D. Hanna, May 09 2010

Keywords

Examples

			1+x = 1 + 1*x/(1+x)^2 + 2*x^2/(1+x)^6 + 9*x^3/(1+x)^12 + 70*x^4/(1+x)^20 + 805*x^5/(1+x)^30 +...
1/(1-x) = 1 + 1*x*(1-x) + 2*x^2*(1-x)^4 + 9*x^3*(1-x)^9 + 70*x^4*(1-x)^16 + 805*x^5*(1-x)^25 +...
Also forms the final terms in rows of the triangle where row n+1 equals the partial sums of row n with the final term repeated 2(n+1) times, starting with a '1' in row 0, as illustrated by:
  1;
  1, 1;
  1, 2,  2,  2,  2;
  1, 3,  5,  7,  9,  9,   9,   9,   9,   9;
  1, 4,  9, 16, 25, 34,  43,  52,  61,  70,  70,  70,  70,  70,  70,  70,  70;
  1, 5, 14, 30, 55, 89, 132, 184, 245, 315, 385, 455, 525, 595, 665, 735, 805, 805, 805, 805, 805, 805, 805, 805, 805, 805;
  ...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, -add(a(j)
          *(-1)^(n-j)*binomial(1+ j^2, n-j), j=0..n-1))
        end:
    seq(a(n), n=0..19);  # Alois P. Heinz, Jul 08 2022
  • PARI
    {a(n)=local(F=1/(1+x+x*O(x^n)));polcoeff(1+x-sum(k=0,n-1,a(k)*x^k*F^(k*(k+1))),n)}

Formula

G.f.: Sum_{n>=0} a(n)*x^n*(1-x)^(n^2) = 1/(1-x).
G.f.: Sum_{n>=0} a(n)*x^n*C(-x)^(n^2+2n) = 1/C(-x) where C(x) is the Catalan function of A000108.
a(n) = number of subpartitions of partition consisting of the first n square numbers starting with zero for n>0; e.g., a(4) = subp([0,1,4,9]) = 70. See A115728 for the definition of subpartitions.

A121430 Number of subpartitions of partition P=[0,1,1,2,2,2,3,3,3,3,4,...] (A003056).

Original entry on oeis.org

1, 1, 2, 3, 7, 12, 18, 43, 76, 118, 170, 403, 711, 1107, 1605, 2220, 5188, 9054, 13986, 20171, 27816, 37149, 85569, 147471, 225363, 322075, 440785, 585046, 758814, 1725291, 2938176, 4441557, 6285390, 8526057, 11226958, 14459138, 18301950
Offset: 0

Views

Author

Paul D. Hanna, Jul 30 2006

Keywords

Comments

See A115728 for the definition of subpartitions of a partition.

Examples

			The g.f. is illustrated by:
1 = (1)*(1-x)^1 + (x + 2*x^2)*(1-x)^2 +
(3*x^3 + 7*x^5 + 12*x^6)*(1-x)^3 +
(18*x^6 + 43*x^7 + 76*x^8 + 118*x^9)*(1-x)^4 +
(170*x^10 + 403*x^11 + 711*x^12 + 1107*x^13 + 1605*x^14)*(1-x)^5 + ...
When the sequence is put in the form of a triangle:
1;
1, 2;
3, 7, 12;
18, 43, 76, 118;
170, 403, 711, 1107, 1605;
2220, 5188, 9054, 13986, 20171, 27816;
37149, 85569, 147471, 225363, 322075, 440785, 585046; ...
then the columns of this triangle form column 0 (with offset)
of successive matrix powers of triangle H=A121412.
This sequence is embedded in table A121424 as follows.
Column 0 of successive powers of matrix H begin:
H^1: [1,1,3,18,170,2220,37149,758814,18301950,...];
H^2: 1, [2,7,43,403,5188,85569,1725291,41145705,...];
H^3: 1,3, [12,76,711,9054,147471,2938176,69328365,...];
H^4: 1,4,18, [118,1107,13986,225363,4441557,103755660,...];
H^5: 1,5,25,170, [1605,20171,322075,6285390,145453290,...];
H^6: 1,6,33,233,2220, [27816,440785,8526057,195579123,...];
H^7: 1,7,42,308,2968,37149, [585046,11226958,255436293,...];
H^8: 1,8,52,396,3866,48420,758814, [14459138,326487241,...];
H^9: 1,9,63,498,4932,61902,966477,18301950, [410368743,...];
the terms enclosed in brackets form this sequence.
		

Crossrefs

Cf. A121412 (triangle H), A121416 (H^2), A121420 (H^3); A121424, A121425; column 0 of H^n: A121413, A121417, A121421.

Programs

  • PARI
    {a(n)=local(A); if(n==0,1,A=x+x*O(x^n); for(k=0, n, A+=polcoeff(A, k)*x^k*(1-(1-x)^( (sqrtint(8*k+1)+1)\2 ) )); polcoeff(A, n))}

Formula

G.f.: 1 = Sum_{n>=1} (1-x)^n * Sum_{k=n*(n-1)/2..n*(n+1)/2-1} a(k)*x^k.

A121431 Number of subpartitions of partition P=[0,0,1,1,1,2,2,2,2,3,3,3,3,3,4,...] (A052146).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 9, 15, 22, 30, 69, 118, 178, 250, 335, 769, 1317, 1995, 2820, 3810, 4984, 11346, 19311, 29126, 41061, 55410, 72492, 92652, 208914, 352636, 528097, 740035, 993678, 1294776, 1649634, 2065146, 4613976, 7722840, 11476963, 15971180
Offset: 0

Views

Author

Paul D. Hanna, Jul 30 2006

Keywords

Comments

See A115728 for the definition of subpartitions of a partition.

Examples

			The g.f. may be illustrated by:
1/(1-x) = (1 + 1*x)*(1-x)^0 + (x^2 + 2*x^3 + 3*x^4)*(1-x)^1 +
(4*x^5 + 9*x^6 + 15*x^7 + 22*x^8)*(1-x)^2 +
(30*x^9 + 69*x^10 + 118*x^11 + 178*x^12 + 250*x^13)*(1-x)^3 +
(335*x^14 + 769*x^15 + 1317*x^16 + 1995*x^17 + 2820*x^18 + 3810*x^19)*(1-x)^4 +...
When the sequence is put in the form of a triangle:
1, 1,
1, 2, 3,
4, 9, 15, 22,
30, 69, 118, 178, 250,
335, 769, 1317, 1995, 2820, 3810,
4984, 11346, 19311, 29126, 41061, 55410, 72492,
92652, 208914, 352636, 528097, 740035, 993678, 1294776, ...
then the columns of this triangle form column 1 (with offset)
of successive matrix powers of triangle H=A121412.
This sequence is embedded in table A121426 as follows.
Column 1 of successive powers of matrix H begin:
H^1: [1,1,4,30,335,4984,92652,2065146,53636520,...];
H^2: [1,2,9,69,769,11346,208914,4613976,118840164,...];
H^3: 1, [3,15,118,1317,19311,352636,7722840,197354133,...];
H^4: 1,4, [22,178,1995,29126,528097,11476963,291124693,...];
H^5: 1,5,30, [250,2820,41061,740035,15971180,402319275,...];
H^6: 1,6,39,335, [3810,55410,993678,21310710,533345745,...];
H^7: 1,7,49,434,4984, [72492,1294776,27611970,686872893,...];
H^8: 1,8,60,548,6362,92652, [1649634,35003430,865852191,...];
H^9: 1,9,72,678,7965,116262,2065146, [43626510,1073540871,...];
the terms enclosed in brackets form this sequence.
		

Crossrefs

Cf. A121412 (triangle H), A121416 (H^2), A121420 (H^3); A121426, A121427; column 1 of H^n: A121414, A121418, A121422; variants: A121430, A121432, A121433.

Programs

  • PARI
    {a(n)=local(A); if(n==0,1,A=x+x*O(x^n); for(k=0, n, A+=polcoeff(A, k)*x^k*(1-(1-x)^( (sqrtint(8*k+9)+1)\2 - 1 ) )); polcoeff(A, n))}

Formula

G.f.: 1/(1-x) = Sum_{n>=0} a(n)*x^n*(1-x)^A052146(n).

A115723 Table of partitions of n with maximum rectangle k.

Original entry on oeis.org

1, 0, 2, 0, 1, 2, 0, 0, 2, 3, 0, 0, 1, 4, 2, 0, 0, 0, 5, 2, 4, 0, 0, 0, 3, 4, 6, 2, 0, 0, 0, 1, 4, 11, 2, 4, 0, 0, 0, 0, 3, 14, 4, 6, 3, 0, 0, 0, 0, 1, 15, 6, 12, 4, 4, 0, 0, 0, 0, 0, 13, 8, 18, 9, 6, 2, 0, 0, 0, 0, 0, 8, 10, 25, 14, 12, 2, 6, 0, 0, 0, 0, 0, 4, 9, 30, 22, 20, 4, 10, 2
Offset: 1

Views

Author

Keywords

Comments

T(n,k)=0 if n > A006218(k).

Examples

			The table starts:
  1;
  0, 2;
  0, 1, 2;
  0, 0, 2, 3;
  0, 0, 1, 4, 2;
  0, 0, 0, 5, 2,  4;
  0, 0, 0, 3, 4,  6, 2;
  0, 0, 0, 1, 4, 11, 2,  4;
  0, 0, 0, 0, 3, 14, 4,  6, 3;
  0, 0, 0, 0, 1, 15, 6, 12, 4, 4;
  ...
		

Crossrefs

Cf. A000005 (diagonal), A000041 (row sums), A061017 (column indices of leftmost nonzero elements), A115724 (column sums), A115727, A115728, A006218, A182099.

Formula

Sum_{k=1..n} k * T(n,k) = A182099(n).

A115725 Number of partitions with maximum rectangle <= n.

Original entry on oeis.org

1, 2, 5, 10, 26, 42, 118, 171, 389, 692, 1442, 1854, 5534, 6895, 11910, 21116, 44278, 52568, 118734, 138670, 300326, 492507, 728514, 829244, 2167430, 2987124, 4167602, 6092588, 11308432, 12554900, 29925267, 33023589, 57950313, 81424281, 106214784, 148101088
Offset: 0

Views

Author

Keywords

Comments

A partition has maximum rectangle <= n iff it is a subpartition of row n of A010766.

Examples

			The 10 partitions with maximum rectangle <= 3: 0: []; 1: [1]; 2: [2], [1^2], [2,1]; 3: [3], [1^3], [3,1], [2,1^2], [3,1^2].
		

Crossrefs

Formula

a(n) = subpart([A115728 (or A115729), [] is row n of A010766.
a(n) = Sum_{k>=0} A182114(k,n). - Alois P. Heinz, Nov 02 2012

A121432 Number of subpartitions of partition P=[0,0,0,1,1,1,1,2,2,2,2,2,3,...], where P(n) = [(sqrt(8*n+25) - 5)/2].

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 5, 11, 18, 26, 35, 45, 101, 169, 250, 345, 455, 581, 1305, 2190, 3255, 4520, 6006, 7735, 9730, 21745, 36360, 53916, 74781, 99351, 128051, 161336, 199692, 443329, 737051, 1087583, 1502270, 1989113, 2556806, 3214774, 3973212, 4843125
Offset: 0

Views

Author

Paul D. Hanna, Jul 30 2006

Keywords

Comments

See A115728 for the definition of subpartitions of a partition.

Examples

			The g.f. may be illustrated by:
1/(1-x) = (1 + x + x^2)*(1-x)^0 + (x^3 + 2*x^4 + 3*x^5 + 4*x^6)*(1-x)^1 +
(5*x^7 + 11*x^8 + 18*x^9 + 26*x^10 + 35*x^11)*(1-x)^2 +
(45*x^12 + 101*x^13 + 169*x^14 + 250*x^15 + 345*x^16 + 455*x^17)*(1-x)^3 +
(581*x^18 + 1305*x^19 + 2190*x^20 + 3255*x^21 + 4520*x^22 + 6006*x^23 + 7735*x^24)*(1-x)^4 +...
When the sequence is put in the form of a triangle:
1, 1, 1,
1, 2, 3, 4,
5, 11, 18, 26, 35,
45, 101, 169, 250, 345, 455,
581, 1305, 2190, 3255, 4520, 6006, 7735,
9730, 21745, 36360, 53916, 74781, 99351, 128051, 161336, ...
then the columns of this triangle form column 2 (with offset)
of successive matrix powers of triangle H=A121412.
This sequence is embedded in table A121428 as follows.
Column 2 of successive powers of matrix H begin:
H^1: [1,1,5,45,581,9730,199692,4843125,135345925,...];
H^2: [1,2,11,101,1305,21745,443329,10679494,296547736,...];
H^3: [1,3,18,169,2190,36360,737051,17645187,487025244,...];
H^4: 1, [4,26,250,3255,53916,1087583,25889969,710546530,...];
H^5: 1,5, [35,345,4520,74781,1502270,35578270,971255050,...];
H^6: 1,6,45, [455,6006,99351,1989113,46890210,1273698270,...];
H^7: 1,7,56,581, [7735,128051,2556806,60022670,1622857887,...];
H^8: 1,8,68,724,9730, [161336,3214774,75190410,2024181693,...];
H^9: 1,9,81,885,12015,199692, [3973212,92627235,2483617140,...];
the terms enclosed in brackets form this sequence.
		

Crossrefs

Cf. A121412 (triangle H), A121416 (H^2), A121420 (H^3); A121428, A121429; column 1 of H^n: A121414, A121418, A121422; variants: A121430, A121431, A121433.

Programs

  • PARI
    {a(n)=local(A); if(n==0,1,A=x+x*O(x^n); for(k=0, n, A+=polcoeff(A, k)*x^k*(1-(1-x)^( (sqrtint(8*k+25)+1)\2 - 2 ) )); polcoeff(A, n))}

Formula

G.f.: 1/(1-x) = Sum_{n>=0} a(n)*x^n*(1-x)^P(n), where P(n)=[(sqrt(8*n+25)-5)/2].

A121433 Number of subpartitions of partition P=[0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,...], where P(n) = [(sqrt(8*n+49) - 7)/2].

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 13, 21, 30, 40, 51, 63, 139, 229, 334, 455, 593, 749, 924, 2043, 3378, 4951, 6785, 8904, 11333, 14098, 17226, 37971, 62655, 91728, 125671, 164997, 210252, 262016, 320904, 387567, 850260, 1397268, 2038545, 2784850, 3647788
Offset: 0

Views

Author

Paul D. Hanna, Jul 30 2006

Keywords

Comments

See A115728 for the definition of subpartitions of a partition.

Examples

			The g.f. may be illustrated by:
1/(1-x) = (1 + x + x^2 + x^3)*(1-x)^0 +
(x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 5*x^8)*(1-x)^1 +
(6*x^9 + 13*x^10 + 21*x^11 + 30*x^12 + 40*x^13 + 51*x^14)*(1-x)^2 +
(63*x^15 + 139*x^16 + 229*x^17 + 334*x^18 + 455*x^19 + 593*x^20 + 749*x^21)*(1-x)^3 +
When the sequence is put in the form of a triangle:
1, 1, 1, 1,
1, 2, 3, 4, 5,
6, 13, 21, 30, 40, 51,
63, 139, 229, 334, 455, 593, 749,
924, 2043, 3378, 4951, 6785, 8904, 11333, 14098,
17226, 37971, 62655, 91728, 125671, 164997, 210252, 262016, 320904,
then the columns of this triangle form column 3 (with offset)
of successive matrix powers of triangle H=A121412.
Column 3 of successive powers of matrix H begin:
H^1: [1,1,6,63,924,17226,387567,10182744,305379129,...];
H^2: [1,2,13,139,2043,37971,850260,22224723,663173878,...];
H^3: [1,3,21,229,3378,62655,1397268,36351147,1079567193,...];
H^4: [1,4,30,334,4951,91728,2038545,52807195,1561301733,...];
H^5: 1, [5,40,455,6785,125671,2784850,71859275,2115718545,...];
H^6: 1,6, [51,593,8904,164997,3647788,93796335,2750797677,...];
H^7: 1,7,63, [749,11333,210252,4639852,118931226,3475200792,...];
H^8: 1,8,76,924, [14098,262016,5774466,147602118,4298315847,...];
H^9: 1,9,90,1119,17226, [320904,7066029,180173970,5230303902,...];
the terms enclosed in brackets form this sequence.
		

Crossrefs

Cf. A121412 (triangle H), A121416 (H^2), A121420 (H^3); column 1 of H^n: A121414, A121418, A121422; variants: A121430, A121431, A121432.

Programs

  • PARI
    {a(n)=local(A); if(n==0,1,A=x+x*O(x^n); for(k=0, n, A+=polcoeff(A, k)*x^k*(1-(1-x)^( (sqrtint(8*k+49)+1)\2 - 3 ) )); polcoeff(A, n))}

Formula

G.f.: 1/(1-x) = Sum_{n>=0} a(n)*x^n*(1-x)^P(n), where P(n)=[(sqrt(8*n+49)-7)/2].

A177448 G.f.: Sum_{n>=0} a(n)*x^n/(1+x)^(2*n^2) = 1+x.

Original entry on oeis.org

1, 1, 2, 13, 166, 3324, 92718, 3354712, 150206430, 8050991676, 504049958320, 36172232930282, 2931474921768206, 265078092222575572, 26480336590135734816, 2898139377307388441520, 345055687960080723910286
Offset: 0

Views

Author

Paul D. Hanna, May 09 2010

Keywords

Examples

			1+x = 1 + 1*x/(1+x)^2 + 2*x^2/(1+x)^8 + 13*x^3/(1+x)^18 + 166*x^4/(1+x)^32 + 3324*x^5/(1+x)^50 + 92718*x^6/(1+x)^72 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(F=1/(1+x+x*O(x^n)));polcoeff(1+x-sum(k=0,n-1,a(k)*x^k*F^(2*k^2)),n)}

Formula

a(n) = number of subpartitions of the partition [0,1,6,15,28,...,2(n-1)^2-(n-1)] for n>0 with a(0)=1. See A115728 for the definition of subpartitions.

A177449 G.f.: Sum_{n>=0} a(n)*x^n/(1+x)^(3*n^2) = 1+x.

Original entry on oeis.org

1, 1, 3, 30, 586, 17865, 756285, 41440056, 2805638310, 227131872654, 21459076173105, 2322336372705030, 283667666439112350, 38643426990067599005, 5813534115429573742587, 957883907138024944675200
Offset: 0

Views

Author

Paul D. Hanna, May 09 2010

Keywords

Examples

			1+x = 1 + 1*x/(1+x)^3 + 3*x^2/(1+x)^12 + 30*x^3/(1+x)^27 + 586*x^4/(1+x)^48 + 17865*x^5/(1+x)^75 + 756285*x^6/(1+x)^108 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(F=1/(1+x+x*O(x^n)));polcoeff(1+x-sum(k=0,n-1,a(k)*x^k*F^(3*k^2)),n)}

Formula

a(n) = number of subpartitions of the partition [0,2,10,24,44,...,3(n-1)^2-(n-1)] for n>0 with a(0)=1. See A115728 for the definition of subpartitions.
Previous Showing 11-20 of 26 results. Next