cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A176644 Triangle T(n, k) = 40^(k*(n-k)), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 40, 1, 1, 1600, 1600, 1, 1, 64000, 2560000, 64000, 1, 1, 2560000, 4096000000, 4096000000, 2560000, 1, 1, 102400000, 6553600000000, 262144000000000, 6553600000000, 102400000, 1, 1, 4096000000, 10485760000000000, 16777216000000000000, 16777216000000000000, 10485760000000000, 4096000000, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 22 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,         1;
  1,        40,             1;
  1,      1600,          1600,               1;
  1,     64000,       2560000,           64000,             1;
  1,   2560000,    4096000000,      4096000000,       2560000,         1;
  1, 102400000, 6553600000000, 262144000000000, 6553600000000, 102400000, 1;
		

Crossrefs

Cf. A000567.
Cf. A176642 (q=2), A176643 (q=3), this sequence (q=4).
Cf. A117401 (m=0), A118180 (m=1), A118185 (m=2), A118190 (m=3), A158116 (m=4), A176642 (m=6), A158117 (m=8), A176627 (m=10), A176639 (m=13), A156581 (m=15), A176643 (m=19), A176631 (m=20), A176641 (m=26), this sequence (m=38).

Programs

  • Magma
    [40^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 01 2021
    
  • Mathematica
    T[n_, k_, q_]:= (q*(3*q-2))^(k*(n-k)); Table[T[n, k, 4], {n, 0, 12}, {k, 0, n}]//Flatten
    Table[(40)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 01 2021 *)
  • Sage
    flatten([[40^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 01 2021

Formula

T(n, k, q) = c(n,q)/(c(k, q)*c(n-k, q)) where c(n, q) = (q*(3*q - 2))^binomial(n+1,2) and q = 4.
T(n, k, q) = (q*(3*q-2))^(k*(n-k)) with q = 4.
T(n, k, m) = (m+2)^(k*(n-k)) with m = 38. - G. C. Greubel, Jul 01 2021

Extensions

Edited by G. C. Greubel, Jul 01 2021

A117403 a(n) = Sum_{k=0..floor(n/2)} 2^((n-2*k)*k) for n>=0.

Original entry on oeis.org

1, 1, 2, 3, 6, 13, 34, 105, 386, 1681, 8706, 53793, 395266, 3442753, 35659778, 440672385, 6476038146, 112812130561, 2336999211010, 57759810847233, 1697654543745026, 59146046307566593, 2450521284684021762
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2006

Keywords

Comments

Equals the antidiagonal sums of triangle A117401.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 13*x^5 + 34*x^6 + 105*x^7 + ...
where
A(x) = 1/(1-x^2) + x/(1-2*x^2) + x^2/(1-4*x^2) + x^3/(1-8*x^2) + x^4/(1-16*x^2) + ...
		

Crossrefs

Cf. A117401 (triangle), A117402 (row sums).

Programs

  • Magma
    [(&+[2^(k*(n-2*k)) : k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Jun 28 2021
    
  • Mathematica
    Table[Sum[2^(k*(n-2*k)), {k,0,Floor[n/2]}], {n,0,30}] (* G. C. Greubel, Jun 28 2021 *)
  • PARI
    a(n) = sum(k=0,n\2,2^((n-2*k)*k))
    
  • PARI
    {a(n) = polcoeff(sum(m=0,n,x^m/(1-2^m*x^2 +x*O(x^n))),n)}
    for(n=0,30,print1(a(n),", "))
    
  • Sage
    [sum(2^(k*(n-2*k)) for k in (0..n//2)) for n in (0..30)] # G. C. Greubel, Jun 28 2021

Formula

G.f.: A(x) = Sum_{n>=0} x^n / (1 - 2^n*x^2).
a(2*n) = Sum_{k=0..n} 4^((n-k)*k).
a(2*n+1) = Sum_{k=0..n} 2^k * 4^((n-k)*k).
G.f.: 1/(1-x^2) - x/(Q(0) +x-x^3), where Q(k) = x^2*(2+x)*2^k -1-x - x*(2*x^2*2^k -1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 11 2013

Extensions

Name changed by Paul D. Hanna, Nov 11 2013

A118022 Triangle T, read by rows, such that T^2 = SHIFT-UP(T); i.e., the matrix square of T shifts each column of T up 1 row, dropping the main diagonal consisting of the powers of 2: [T^2](n,k) = T(n+1,k) with T(n,n) = 2^n for n>=k>=0.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 19, 24, 16, 8, 243, 304, 192, 64, 16, 6227, 7776, 4864, 1536, 256, 32, 319251, 398528, 248832, 77824, 12288, 1024, 64, 32737427, 40864128, 25505792, 7962624, 1245184, 98304, 4096, 128, 6714170259, 8380781312, 5230608384
Offset: 0

Views

Author

Paul D. Hanna, Apr 10 2006

Keywords

Comments

Column 0 is A118023, where T(n,k) = A118023(n-k)*2^(k*(n-k+1)).

Examples

			Triangle T begins:
1;
1,2;
3,4,4;
19,24,16,8;
243,304,192,64,16;
6227,7776,4864,1536,256,32;
319251,398528,248832,77824,12288,1024,64;
32737427,40864128,25505792,7962624,1245184,98304,4096,128; ...
Matrix square, T^2, equals SHIFT_UP(T):
1;
3,4;
19,24,16;
243,304,192,64;
6227,7776,4864,1536,256;
319251,398528,248832,77824,12288,1024; ...
G.f. for column 0: 1 = (1-x) + 1*x*(1-x)(1-2x) + 3*x^2*(1-x)(1-2x)(1-4x) + ...
+ T(n,0)*x^n*(1-x)(1-2x)(1-4x)*..*(1-2^n*x) + ...
G.f. for column 1: 2 = 2(1-2x) + 4*x*(1-2x)(1-4x) + 24*x^2*(1-2x)(1-4x)(1-8x) + ...
+ T(n+1,1)*x^n*(1-2x)(1-4x)(1-8x)*..*(1-2^(n+1)*x) + ...
G.f. for column 2: 4 = 4(1-4x) + 16*x*(1-4x)(1-8x) + 192*x^2*(1-4x)(1-8x)(1-16x) + ...
+ T(n+2,2)*x^n*(1-4x)(1-8x)(1-16x)*..*(1-2^(n+2)*x) + ...
		

Crossrefs

Cf. A118023 (column 0); A117401 (related triangle); A118024 (variant).

Programs

  • PARI
    {T(n, k)=local(A=matrix(1, 1), B); A[1, 1]=1; for(m=2, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, i]=2^(i-1), if(j==1, B[i, j]=(A^2)[i-1, 1], B[i, j]=(A^2)[i-1, j])); )); A=B); return(A[n+1, k+1])}

Formula

G.f. for column k: 2^k = Sum{n>=0} T(n+k,k)*x^n*prod_{j=0..n} (1-2^(j+k)*x). T(n,k) = T(n-k,0)*2^(k*(n-k+1)) = A118023(n-k)*2^(k*(n-k+1)).

A118024 Triangle T, read by rows, T(n,k) = T(n-k)*2^(k*(n-k)) such that column 0 of the matrix square of T equals column 0 of T shifted left: [T^2](n,k) = T(n-k+1,0)*2^(k*(n-k)) for n>=k>=0.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 6, 8, 4, 1, 28, 48, 32, 8, 1, 216, 448, 384, 128, 16, 1, 2864, 6912, 7168, 3072, 512, 32, 1, 66656, 183296, 221184, 114688, 24576, 2048, 64, 1, 2760896, 8531968, 11730944, 7077888, 1835008, 196608, 8192, 128, 1, 205824384, 706789376
Offset: 0

Views

Author

Paul D. Hanna, Apr 10 2006

Keywords

Comments

Column 0 is A118025, where T(n,k) = A118025(n-k)*2^(k*(n-k)).

Examples

			Triangle T begins:
1;
1,1;
2,2,1;
6,8,4,1;
28,48,32,8,1;
216,448,384,128,16,1;
2864,6912,7168,3072,512,32,1;
66656,183296,221184,114688,24576,2048,64,1; ...
2760896,8531968,11730944,7077888,1835008,196608,8192,128,1; ...
Matrix square is given by [T^2](n,k) = T(n-k+1,0)*2^(k*(n-k)):
1;
2,1;
6,4,1;
28,24,8,1;
216,224,96,16,1;
2864,3456,1792,384,32,1; ...
so that column 0 of T^2 equals column 0 of T shift left 1 place.
		

Crossrefs

Cf. A118025 (column 0); A117401 (related triangle); A118022 (variant).
Cf. A123305.

Programs

  • PARI
    {T(n, k)=if(n<0 || k>n,0,if(n==k,1,2^k*sum(j=0, n-1, T(n-1, j)*T(j, k)); ))} \\ Paul D. Hanna, Sep 25 2006

Formula

T(n,k) = A118025(n-k)*2^(k*(n-k)) for n>=k>=0.

A134530 Matrix log of triangle A111636, where A111636(n,k) = (2^k)^(n-k)*C(n,k) for n>=k>=0.

Original entry on oeis.org

0, 1, 0, -1, 4, 0, 5, -12, 12, 0, -79, 160, -96, 32, 0, 3377, -6320, 3200, -640, 80, 0, -362431, 648384, -303360, 51200, -3840, 192, 0, 93473345, -162369088, 72619008, -11325440, 716800, -21504, 448, 0, -56272471039, 95716705280, -41566486528, 6196822016, -362414080, 9175040, -114688, 1024, 0
Offset: 0

Views

Author

Paul D. Hanna, Oct 30 2007

Keywords

Examples

			Triangle begins:
0,
1, 0;
-1, 4, 0;
5, -12, 12, 0;
-79, 160, -96, 32, 0;
3377, -6320, 3200, -640, 80, 0;
-362431, 648384, -303360, 51200, -3840, 192, 0;
93473345, -162369088, 72619008, -11325440, 716800, -21504, 448, 0; ...
Matrix exponentiation yields triangle A111636, which begins:
1;
1, 1;
1, 4, 1;
1, 12, 12, 1;
1, 32, 96, 32, 1;
1, 80, 640, 640, 80, 1; ...
		

Crossrefs

Cf. A134531 (column 0); related triangles: A111636, A117401; A011266.

Programs

  • PARI
    {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,2^((c-1)*(r-c))*binomial(r-1,c-1))),L); L=sum(i=1,#M,-(M^0-M)^i/i);L[n+1,k+1]}

Formula

T(n,k) = A134531(n-k)*(2^k)^(n-k)*C(n,k), where A134531 is column 0 and satisfies: G.f.: Sum_{n>=0} A134531(n)*x^n/[n!*2^(n*(n-1)/2)] = log(Sum_{n>=0}x^n/[n!*2^(n*(n-1)/2)]).

A118410 G.f. A(x) = Sum_{n>=0} a(n)*x^n/2^(n*(n-1)/2) satisfies: A(x) = Sum_{n>=0} A(x)^n*x^n/2^(n*(n-1)/2).

Original entry on oeis.org

1, 1, 3, 21, 321, 10385, 699073, 96908737, 27478721537, 15863659383041, 18583701166494721, 44066148876930001921, 211105432749968736673793, 2040201553888722742048509953, 39729701298130761785818052935681
Offset: 0

Views

Author

Paul D. Hanna, Apr 27 2006

Keywords

Examples

			A(x) = 1 + x + 3*x^2/2 + 21*x^3/8 + 321*x^4/64 + 10385*x^5/1024 +...
A(x) = 1 + x*A(x) + x^2*A(x)^2/2 + x^3*A(x)^3/8 +...
		

Crossrefs

Cf. A117401.

Programs

  • PARI
    {a(n)=2^(n*(n-1)/2)*polcoeff(1/x*serreverse(x/sum(k=0,n,x^k/2^(k*(k-1)/2)+x*O(x^n))),n)}

Formula

G.f.: A(x) = (1/x)*series_reversion[x/Sum_{n>=0} x^n/2^(n*(n-1)/2)].

A344260 a(n) is the number of relations from an n-element set into a set of at most n elements.

Original entry on oeis.org

1, 3, 21, 585, 69905, 34636833, 69810262081, 567382630219905, 18519084246547628289, 2422583247133816584929793, 1268889750375080065623288448001, 2659754699919401766201267083003561985, 22306191045953951743035482794815064402563073, 748380193317489370459454048174977015562807531282433
Offset: 0

Views

Author

Stefano Spezia, May 13 2021

Keywords

Comments

Symmetrically, also the number of relations from a set of at most n elements into an n-element set.

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[(2^(n+n^2)-1)/(2^n-1),{n,13}]]

Formula

a(n) = (2^(n+n^2) - 1)/(2^n - 1) for n > 0 and a(0) = 1.
a(n) ~ 2^(n^2).
a(n) = A275779(n) + 1. - Hugo Pfoertner, May 14 2021

A368264 Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k cylinder by two distinct tiles.

Original entry on oeis.org

2, 4, 3, 8, 10, 4, 16, 36, 24, 6, 32, 136, 176, 70, 8, 64, 528, 1376, 1044, 208, 14, 128, 2080, 10944, 16456, 6560, 700, 20, 256, 8256, 87424, 262416, 209728, 43800, 2344, 36, 512, 32896, 699136, 4195360, 6710912, 2796976, 299600, 8230, 60
Offset: 1

Views

Author

Peter Kagey, Dec 21 2023

Keywords

Examples

			Table begins:
  n\k|  1   2     3       4         5           6
  ---+-------------------------------------------
   1 |  2   4     8      16        32          64
   2 |  3  10    36     136       528        2080
   3 |  4  24   176    1376     10944       87424
   4 |  6  70  1044   16456    262416     4195360
   5 |  8 208  6560  209728   6710912   214748416
   6 | 14 700 43800 2796976 178962784 11453291200
		

Crossrefs

Programs

  • Mathematica
    A368264[n_, m_] := 1/n (DivisorSum[n, EulerPhi[#]*2^(n*m/#) &])
Previous Showing 21-28 of 28 results.