A176644
Triangle T(n, k) = 40^(k*(n-k)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 40, 1, 1, 1600, 1600, 1, 1, 64000, 2560000, 64000, 1, 1, 2560000, 4096000000, 4096000000, 2560000, 1, 1, 102400000, 6553600000000, 262144000000000, 6553600000000, 102400000, 1, 1, 4096000000, 10485760000000000, 16777216000000000000, 16777216000000000000, 10485760000000000, 4096000000, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 40, 1;
1, 1600, 1600, 1;
1, 64000, 2560000, 64000, 1;
1, 2560000, 4096000000, 4096000000, 2560000, 1;
1, 102400000, 6553600000000, 262144000000000, 6553600000000, 102400000, 1;
Cf.
A117401 (m=0),
A118180 (m=1),
A118185 (m=2),
A118190 (m=3),
A158116 (m=4),
A176642 (m=6),
A158117 (m=8),
A176627 (m=10),
A176639 (m=13),
A156581 (m=15),
A176643 (m=19),
A176631 (m=20),
A176641 (m=26), this sequence (m=38).
-
[40^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 01 2021
-
T[n_, k_, q_]:= (q*(3*q-2))^(k*(n-k)); Table[T[n, k, 4], {n, 0, 12}, {k, 0, n}]//Flatten
Table[(40)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 01 2021 *)
-
flatten([[40^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 01 2021
A117403
a(n) = Sum_{k=0..floor(n/2)} 2^((n-2*k)*k) for n>=0.
Original entry on oeis.org
1, 1, 2, 3, 6, 13, 34, 105, 386, 1681, 8706, 53793, 395266, 3442753, 35659778, 440672385, 6476038146, 112812130561, 2336999211010, 57759810847233, 1697654543745026, 59146046307566593, 2450521284684021762
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 13*x^5 + 34*x^6 + 105*x^7 + ...
where
A(x) = 1/(1-x^2) + x/(1-2*x^2) + x^2/(1-4*x^2) + x^3/(1-8*x^2) + x^4/(1-16*x^2) + ...
-
[(&+[2^(k*(n-2*k)) : k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Jun 28 2021
-
Table[Sum[2^(k*(n-2*k)), {k,0,Floor[n/2]}], {n,0,30}] (* G. C. Greubel, Jun 28 2021 *)
-
a(n) = sum(k=0,n\2,2^((n-2*k)*k))
-
{a(n) = polcoeff(sum(m=0,n,x^m/(1-2^m*x^2 +x*O(x^n))),n)}
for(n=0,30,print1(a(n),", "))
-
[sum(2^(k*(n-2*k)) for k in (0..n//2)) for n in (0..30)] # G. C. Greubel, Jun 28 2021
A118022
Triangle T, read by rows, such that T^2 = SHIFT-UP(T); i.e., the matrix square of T shifts each column of T up 1 row, dropping the main diagonal consisting of the powers of 2: [T^2](n,k) = T(n+1,k) with T(n,n) = 2^n for n>=k>=0.
Original entry on oeis.org
1, 1, 2, 3, 4, 4, 19, 24, 16, 8, 243, 304, 192, 64, 16, 6227, 7776, 4864, 1536, 256, 32, 319251, 398528, 248832, 77824, 12288, 1024, 64, 32737427, 40864128, 25505792, 7962624, 1245184, 98304, 4096, 128, 6714170259, 8380781312, 5230608384
Offset: 0
Triangle T begins:
1;
1,2;
3,4,4;
19,24,16,8;
243,304,192,64,16;
6227,7776,4864,1536,256,32;
319251,398528,248832,77824,12288,1024,64;
32737427,40864128,25505792,7962624,1245184,98304,4096,128; ...
Matrix square, T^2, equals SHIFT_UP(T):
1;
3,4;
19,24,16;
243,304,192,64;
6227,7776,4864,1536,256;
319251,398528,248832,77824,12288,1024; ...
G.f. for column 0: 1 = (1-x) + 1*x*(1-x)(1-2x) + 3*x^2*(1-x)(1-2x)(1-4x) + ...
+ T(n,0)*x^n*(1-x)(1-2x)(1-4x)*..*(1-2^n*x) + ...
G.f. for column 1: 2 = 2(1-2x) + 4*x*(1-2x)(1-4x) + 24*x^2*(1-2x)(1-4x)(1-8x) + ...
+ T(n+1,1)*x^n*(1-2x)(1-4x)(1-8x)*..*(1-2^(n+1)*x) + ...
G.f. for column 2: 4 = 4(1-4x) + 16*x*(1-4x)(1-8x) + 192*x^2*(1-4x)(1-8x)(1-16x) + ...
+ T(n+2,2)*x^n*(1-4x)(1-8x)(1-16x)*..*(1-2^(n+2)*x) + ...
-
{T(n, k)=local(A=matrix(1, 1), B); A[1, 1]=1; for(m=2, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, i]=2^(i-1), if(j==1, B[i, j]=(A^2)[i-1, 1], B[i, j]=(A^2)[i-1, j])); )); A=B); return(A[n+1, k+1])}
A118024
Triangle T, read by rows, T(n,k) = T(n-k)*2^(k*(n-k)) such that column 0 of the matrix square of T equals column 0 of T shifted left: [T^2](n,k) = T(n-k+1,0)*2^(k*(n-k)) for n>=k>=0.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 6, 8, 4, 1, 28, 48, 32, 8, 1, 216, 448, 384, 128, 16, 1, 2864, 6912, 7168, 3072, 512, 32, 1, 66656, 183296, 221184, 114688, 24576, 2048, 64, 1, 2760896, 8531968, 11730944, 7077888, 1835008, 196608, 8192, 128, 1, 205824384, 706789376
Offset: 0
Triangle T begins:
1;
1,1;
2,2,1;
6,8,4,1;
28,48,32,8,1;
216,448,384,128,16,1;
2864,6912,7168,3072,512,32,1;
66656,183296,221184,114688,24576,2048,64,1; ...
2760896,8531968,11730944,7077888,1835008,196608,8192,128,1; ...
Matrix square is given by [T^2](n,k) = T(n-k+1,0)*2^(k*(n-k)):
1;
2,1;
6,4,1;
28,24,8,1;
216,224,96,16,1;
2864,3456,1792,384,32,1; ...
so that column 0 of T^2 equals column 0 of T shift left 1 place.
-
{T(n, k)=if(n<0 || k>n,0,if(n==k,1,2^k*sum(j=0, n-1, T(n-1, j)*T(j, k)); ))} \\ Paul D. Hanna, Sep 25 2006
A134530
Matrix log of triangle A111636, where A111636(n,k) = (2^k)^(n-k)*C(n,k) for n>=k>=0.
Original entry on oeis.org
0, 1, 0, -1, 4, 0, 5, -12, 12, 0, -79, 160, -96, 32, 0, 3377, -6320, 3200, -640, 80, 0, -362431, 648384, -303360, 51200, -3840, 192, 0, 93473345, -162369088, 72619008, -11325440, 716800, -21504, 448, 0, -56272471039, 95716705280, -41566486528, 6196822016, -362414080, 9175040, -114688, 1024, 0
Offset: 0
Triangle begins:
0,
1, 0;
-1, 4, 0;
5, -12, 12, 0;
-79, 160, -96, 32, 0;
3377, -6320, 3200, -640, 80, 0;
-362431, 648384, -303360, 51200, -3840, 192, 0;
93473345, -162369088, 72619008, -11325440, 716800, -21504, 448, 0; ...
Matrix exponentiation yields triangle A111636, which begins:
1;
1, 1;
1, 4, 1;
1, 12, 12, 1;
1, 32, 96, 32, 1;
1, 80, 640, 640, 80, 1; ...
-
{T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,2^((c-1)*(r-c))*binomial(r-1,c-1))),L); L=sum(i=1,#M,-(M^0-M)^i/i);L[n+1,k+1]}
A118410
G.f. A(x) = Sum_{n>=0} a(n)*x^n/2^(n*(n-1)/2) satisfies: A(x) = Sum_{n>=0} A(x)^n*x^n/2^(n*(n-1)/2).
Original entry on oeis.org
1, 1, 3, 21, 321, 10385, 699073, 96908737, 27478721537, 15863659383041, 18583701166494721, 44066148876930001921, 211105432749968736673793, 2040201553888722742048509953, 39729701298130761785818052935681
Offset: 0
A(x) = 1 + x + 3*x^2/2 + 21*x^3/8 + 321*x^4/64 + 10385*x^5/1024 +...
A(x) = 1 + x*A(x) + x^2*A(x)^2/2 + x^3*A(x)^3/8 +...
A344260
a(n) is the number of relations from an n-element set into a set of at most n elements.
Original entry on oeis.org
1, 3, 21, 585, 69905, 34636833, 69810262081, 567382630219905, 18519084246547628289, 2422583247133816584929793, 1268889750375080065623288448001, 2659754699919401766201267083003561985, 22306191045953951743035482794815064402563073, 748380193317489370459454048174977015562807531282433
Offset: 0
A368264
Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k cylinder by two distinct tiles.
Original entry on oeis.org
2, 4, 3, 8, 10, 4, 16, 36, 24, 6, 32, 136, 176, 70, 8, 64, 528, 1376, 1044, 208, 14, 128, 2080, 10944, 16456, 6560, 700, 20, 256, 8256, 87424, 262416, 209728, 43800, 2344, 36, 512, 32896, 699136, 4195360, 6710912, 2796976, 299600, 8230, 60
Offset: 1
Table begins:
n\k| 1 2 3 4 5 6
---+-------------------------------------------
1 | 2 4 8 16 32 64
2 | 3 10 36 136 528 2080
3 | 4 24 176 1376 10944 87424
4 | 6 70 1044 16456 262416 4195360
5 | 8 208 6560 209728 6710912 214748416
6 | 14 700 43800 2796976 178962784 11453291200
Comments