A326294
Number of connected simple graphs on a subset of {1..n} with no crossing or nesting edges.
Original entry on oeis.org
1, 1, 2, 8, 35, 147, 600, 2418
Offset: 0
The a(4) = 35 edge-sets:
{} {12} {12,13} {12,13,14} {12,13,14,34}
{13} {12,14} {12,13,23} {12,13,23,34}
{14} {12,23} {12,13,34} {12,14,24,34}
{23} {12,24} {12,14,24} {12,23,24,34}
{24} {13,14} {12,14,34}
{34} {13,23} {12,23,24}
{13,34} {12,23,34}
{14,24} {12,24,34}
{14,34} {13,14,34}
{23,24} {13,23,34}
{23,34} {14,24,34}
{24,34} {23,24,34}
The inverse binomial transform is the covering case
A326339.
Covering graphs with no crossing or nesting edges are
A326329.
Connected simple graphs are
A001349.
Graphs without crossing or nesting edges are
A326244.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[#]]<=1&&!MatchQ[#,{_,{x_,y_},_,{z_,t_},_}/;x
A129367
Triangle T(n, k) = A002415(n-k+3)*A002415(k+3), read by rows.
Original entry on oeis.org
36, 120, 120, 300, 400, 300, 630, 1000, 1000, 630, 1176, 2100, 2500, 2100, 1176, 2016, 3920, 5250, 5250, 3920, 2016, 3240, 6720, 9800, 11025, 9800, 6720, 3240, 4950, 10800, 16800, 20580, 20580, 16800, 10800, 4950, 7260, 16500, 27000, 35280, 38416, 35280, 27000, 16500, 7260
Offset: 0
Triangle begins as:
36;
120, 120;
300, 400, 300;
630, 1000, 1000, 630;
1176, 2100, 2500, 2100, 1176;
2016, 3920, 5250, 5250, 3920, 2016;
3240, 6720, 9800, 11025, 9800, 6720, 3240;
4950, 10800, 16800, 20580, 20580, 16800, 10800, 4950;
7260, 16500, 27000, 35280, 38416, 35280, 27000, 16500, 7260;
-
[Binomial((n-k+3)^2,2)*Binomial((k+3)^2,2)/36: k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 31 2024
-
A129367[n_, k_]:= Binomial[(n-k+3)^2, 2]*Binomial[(k+3)^2, 2]/36;
Table[A129367[n,k], {n,0,12}, {k,0,n}]//Flatten
-
def A129367(n,k): return binomial((n-k+3)^2,2)*binomial((k+3)^2,2)/36
flatten([[A129367(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 31 2024
A326247
Number of labeled n-vertex 2-edge multigraphs that are neither crossing nor nesting.
Original entry on oeis.org
0, 0, 1, 9, 32, 80, 165, 301, 504, 792, 1185, 1705, 2376, 3224, 4277, 5565, 7120, 8976, 11169, 13737, 16720, 20160, 24101, 28589, 33672, 39400, 45825, 53001, 60984, 69832, 79605, 90365, 102176, 115104, 129217, 144585, 161280, 179376, 198949, 220077, 242840
Offset: 0
The a(3) = 9 pairs of edges:
{12,12}
{12,13}
{12,23}
{13,12}
{13,13}
{13,23}
{23,12}
{23,13}
{23,23}
The case for simple graphs (rather than multigraphs) is
A095661.
Simple graphs that are neither crossing nor nesting are
A326244.
The case for set partitions is
A001519.
Non-crossing and non-nesting simple graphs are (both)
A054726.
-
croXQ[stn_]:=MatchQ[stn,{_,{x_,y_},_,{z_,t_},_}/;x_,{x_,y_},_,{z_,t_},_}/;x
A326349
Number of non-nesting, topologically connected simple graphs covering {1..n}.
Original entry on oeis.org
1, 0, 1, 0, 1, 11, 95, 797
Offset: 0
The a(5) = 11 edge-sets:
{13,14,25}
{13,24,25}
{13,24,35}
{14,24,35}
{14,25,35}
{13,14,24,25}
{13,14,24,35}
{13,14,25,35}
{13,24,25,35}
{14,24,25,35}
{13,14,24,25,35}
The binomial transform is the non-covering case
A326293.
Topologically connected, covering simple graphs are
A324327.
Non-crossing, covering simple graphs are
A324169.
-
croXQ[eds_]:=MatchQ[eds,{_,{x_,y_},_,{z_,t_},_}/;x_,{x_,y_},_,{z_,t_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&!nesXQ[#]&&Length[csm[Union[Subsets[#,{1}],Select[Subsets[#,{2}],croXQ]]]]<=1&]],{n,0,5}]
A326350
Number of non-nesting connected simple graphs with vertices {1..n}.
Original entry on oeis.org
1, 0, 1, 4, 23, 157, 1182
Offset: 0
The inverse binomial transform is the non-covering case
A326351.
Connected simple graphs are
A001349.
Connected simple graphs with no crossing or nesting edges are
A326294.
Simple graphs without crossing or nesting edges are
A326244.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]<=1&&!MatchQ[#,{_,{x_,y_},_,{z_,t_},_}/;x
A130857
a(n) = (n-1)*n*(n+1)*(n+2)*(2n+11)/120.
Original entry on oeis.org
0, 3, 17, 57, 147, 322, 630, 1134, 1914, 3069, 4719, 7007, 10101, 14196, 19516, 26316, 34884, 45543, 58653, 74613, 93863, 116886, 144210, 176410, 214110, 257985, 308763, 367227, 434217, 510632, 597432, 695640, 806344, 930699, 1069929
Offset: 1
-
Table[(n - 1)*n(n + 1)*(n + 2)*(2*n + 11)/120, {n, 1, 35}]
Times@@#*(2#[[2]]+11)/120&/@Partition[Range[0,40],4,1] (* Harvey P. Dale, Oct 28 2012 *)
A326351
Number of non-nesting connected simple graphs on a subset of {1..n}.
Original entry on oeis.org
1, 1, 2, 8, 46, 323, 2565
Offset: 0
The binomial transform is the covering case
A326350.
Connected simple graphs are
A001349.
Connected simple graphs with no crossing or nesting edges are
A326294.
Simple graphs without crossing or nesting edges are
A326244.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[#]]<=1&&!MatchQ[#,{_,{x_,y_},_,{z_,t_},_}/;x
A211381
Number of pairs of intersecting diagonals in the exterior of a regular n-gon.
Original entry on oeis.org
0, 0, 0, 0, 7, 24, 63, 130, 242, 408, 650, 980, 1425, 2000, 2737, 3654, 4788, 6160, 7812, 9768, 12075, 14760, 17875, 21450, 25542, 30184, 35438, 41340, 47957, 55328, 63525, 72590, 82600, 93600, 105672, 118864, 133263, 148920, 165927, 184338, 204250, 225720
Offset: 3
-
a:= n-> `if`(n mod 2 = 0, 1/24*n*(n-4)*(n-6)*(2*n-7), 1/24*n*(n-3)*(n-5)*(2*n-11)): seq (a(n), n=3..40);
A326278
Number of n-vertex, 2-edge multigraphs that are not nesting. Number of n-vertex, 2-edge multigraphs that are not crossing.
Original entry on oeis.org
0, 0, 1, 9, 34, 90, 195, 371, 644, 1044, 1605, 2365, 3366, 4654, 6279, 8295, 10760, 13736, 17289, 21489, 26410, 32130, 38731, 46299, 54924, 64700, 75725, 88101, 101934, 117334, 134415, 153295, 174096, 196944, 221969, 249305, 279090, 311466, 346579, 384579
Offset: 0
The a(3) = 9 non-crossing multigraphs:
{12,12}
{12,13}
{12,23}
{13,12}
{13,13}
{13,23}
{23,12}
{23,13}
{23,23}
The case for 2-edge simple graphs (rather than multigraphs) is
A117662.
-
croXQ[stn_]:=MatchQ[stn,{_,{x_,y_},_,{z_,t_},_}/;x
Comments