cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A326294 Number of connected simple graphs on a subset of {1..n} with no crossing or nesting edges.

Original entry on oeis.org

1, 1, 2, 8, 35, 147, 600, 2418
Offset: 0

Views

Author

Gus Wiseman, Jun 29 2019

Keywords

Comments

Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d.

Examples

			The a(4) = 35 edge-sets:
  {}  {12}  {12,13}  {12,13,14}  {12,13,14,34}
      {13}  {12,14}  {12,13,23}  {12,13,23,34}
      {14}  {12,23}  {12,13,34}  {12,14,24,34}
      {23}  {12,24}  {12,14,24}  {12,23,24,34}
      {24}  {13,14}  {12,14,34}
      {34}  {13,23}  {12,23,24}
            {13,34}  {12,23,34}
            {14,24}  {12,24,34}
            {14,34}  {13,14,34}
            {23,24}  {13,23,34}
            {23,34}  {14,24,34}
            {24,34}  {23,24,34}
		

Crossrefs

The inverse binomial transform is the covering case A326339.
Covering graphs with no crossing or nesting edges are A326329.
Connected simple graphs are A001349.
Graphs without crossing or nesting edges are A326244.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[#]]<=1&&!MatchQ[#,{_,{x_,y_},_,{z_,t_},_}/;x
    				

Formula

Conjecture: a(n) = A052161(n - 2) + 1.

A129367 Triangle T(n, k) = A002415(n-k+3)*A002415(k+3), read by rows.

Original entry on oeis.org

36, 120, 120, 300, 400, 300, 630, 1000, 1000, 630, 1176, 2100, 2500, 2100, 1176, 2016, 3920, 5250, 5250, 3920, 2016, 3240, 6720, 9800, 11025, 9800, 6720, 3240, 4950, 10800, 16800, 20580, 20580, 16800, 10800, 4950, 7260, 16500, 27000, 35280, 38416, 35280, 27000, 16500, 7260
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Aug 25 2008

Keywords

Examples

			Triangle begins as:
    36;
   120,   120;
   300,   400,   300;
   630,  1000,  1000,   630;
  1176,  2100,  2500,  2100,  1176;
  2016,  3920,  5250,  5250,  3920,  2016;
  3240,  6720,  9800, 11025,  9800,  6720,  3240;
  4950, 10800, 16800, 20580, 20580, 16800, 10800,  4950;
  7260, 16500, 27000, 35280, 38416, 35280, 27000, 16500, 7260;
		

Crossrefs

Programs

  • Magma
    [Binomial((n-k+3)^2,2)*Binomial((k+3)^2,2)/36: k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 31 2024
    
  • Mathematica
    A129367[n_, k_]:= Binomial[(n-k+3)^2, 2]*Binomial[(k+3)^2, 2]/36;
    Table[A129367[n,k], {n,0,12}, {k,0,n}]//Flatten
  • SageMath
    def A129367(n,k): return binomial((n-k+3)^2,2)*binomial((k+3)^2,2)/36
    flatten([[A129367(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 31 2024

Formula

T(n,k) = A002415(n-k+3)*A002415(k+3), where A002415(n) = n^2*(n^2-1)/12.
T(n, n-k) = T(n, k).

Extensions

Edited by G. C. Greubel, Jan 31 2024

A326247 Number of labeled n-vertex 2-edge multigraphs that are neither crossing nor nesting.

Original entry on oeis.org

0, 0, 1, 9, 32, 80, 165, 301, 504, 792, 1185, 1705, 2376, 3224, 4277, 5565, 7120, 8976, 11169, 13737, 16720, 20160, 24101, 28589, 33672, 39400, 45825, 53001, 60984, 69832, 79605, 90365, 102176, 115104, 129217, 144585, 161280, 179376, 198949, 220077, 242840
Offset: 0

Views

Author

Gus Wiseman, Jun 20 2019

Keywords

Comments

Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d.

Examples

			The a(3) = 9 pairs of edges:
  {12,12}
  {12,13}
  {12,23}
  {13,12}
  {13,13}
  {13,23}
  {23,12}
  {23,13}
  {23,23}
		

Crossrefs

The case for simple graphs (rather than multigraphs) is A095661.
Simple graphs that are neither crossing nor nesting are A326244.
The case for set partitions is A001519.
Non-crossing and non-nesting simple graphs are (both) A054726.

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{x_,y_},_,{z_,t_},_}/;x_,{x_,y_},_,{z_,t_},_}/;x
    				

Formula

Conjectures from Colin Barker, Jun 21 2019: (Start)
G.f.: x^2*(1 + 4*x - 3*x^2) / (1 - x)^5.
a(n) = (n*(12 - 19*n + 6*n^2 + n^3)) / 12.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>4.
(End)

A326349 Number of non-nesting, topologically connected simple graphs covering {1..n}.

Original entry on oeis.org

1, 0, 1, 0, 1, 11, 95, 797
Offset: 0

Views

Author

Gus Wiseman, Jun 30 2019

Keywords

Comments

Covering means there are no isolated vertices. Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d. A graph with positive integer vertices is topologically connected if the graph whose vertices are the edges and whose edges are crossing pairs of edges is connected.

Examples

			The a(5) = 11 edge-sets:
  {13,14,25}
  {13,24,25}
  {13,24,35}
  {14,24,35}
  {14,25,35}
  {13,14,24,25}
  {13,14,24,35}
  {13,14,25,35}
  {13,24,25,35}
  {14,24,25,35}
  {13,14,24,25,35}
		

Crossrefs

The binomial transform is the non-covering case A326293.
Topologically connected, covering simple graphs are A324327.
Non-crossing, covering simple graphs are A324169.

Programs

  • Mathematica
    croXQ[eds_]:=MatchQ[eds,{_,{x_,y_},_,{z_,t_},_}/;x_,{x_,y_},_,{z_,t_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&!nesXQ[#]&&Length[csm[Union[Subsets[#,{1}],Select[Subsets[#,{2}],croXQ]]]]<=1&]],{n,0,5}]

A326350 Number of non-nesting connected simple graphs with vertices {1..n}.

Original entry on oeis.org

1, 0, 1, 4, 23, 157, 1182
Offset: 0

Views

Author

Gus Wiseman, Jun 30 2019

Keywords

Comments

Two edges {a,b}, {c,d} are nesting if a < c < d < b or c < a < b < d.

Crossrefs

The inverse binomial transform is the non-covering case A326351.
Connected simple graphs are A001349.
Connected simple graphs with no crossing or nesting edges are A326294.
Simple graphs without crossing or nesting edges are A326244.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]<=1&&!MatchQ[#,{_,{x_,y_},_,{z_,t_},_}/;x
    				

A130857 a(n) = (n-1)*n*(n+1)*(n+2)*(2n+11)/120.

Original entry on oeis.org

0, 3, 17, 57, 147, 322, 630, 1134, 1914, 3069, 4719, 7007, 10101, 14196, 19516, 26316, 34884, 45543, 58653, 74613, 93863, 116886, 144210, 176410, 214110, 257985, 308763, 367227, 434217, 510632, 597432, 695640, 806344, 930699, 1069929
Offset: 1

Views

Author

Roger L. Bagula, Jul 22 2007

Keywords

Comments

The motivation for this sequence is the triple sum Sum[Sum[Sum[k^2-1,{k,1,m}],{m,1,j}],{j,1,n}], which can be simplified into the polynomial term given as definition.

Crossrefs

Cf. A117662.

Programs

  • Mathematica
    Table[(n - 1)*n(n + 1)*(n + 2)*(2*n + 11)/120, {n, 1, 35}]
    Times@@#*(2#[[2]]+11)/120&/@Partition[Range[0,40],4,1] (* Harvey P. Dale, Oct 28 2012 *)

Formula

G.f.: -x^2*(x-3)/(-1+x)^6. - R. J. Mathar, Nov 14 2007

Extensions

Edited and extended by N. J. A. Sloane, Jul 26 2007

A326351 Number of non-nesting connected simple graphs on a subset of {1..n}.

Original entry on oeis.org

1, 1, 2, 8, 46, 323, 2565
Offset: 0

Views

Author

Gus Wiseman, Jun 30 2019

Keywords

Comments

Two edges {a,b}, {c,d} are nesting if a < c < d < b or c < a < b < d.

Crossrefs

The binomial transform is the covering case A326350.
Connected simple graphs are A001349.
Connected simple graphs with no crossing or nesting edges are A326294.
Simple graphs without crossing or nesting edges are A326244.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[#]]<=1&&!MatchQ[#,{_,{x_,y_},_,{z_,t_},_}/;x
    				

A211381 Number of pairs of intersecting diagonals in the exterior of a regular n-gon.

Original entry on oeis.org

0, 0, 0, 0, 7, 24, 63, 130, 242, 408, 650, 980, 1425, 2000, 2737, 3654, 4788, 6160, 7812, 9768, 12075, 14760, 17875, 21450, 25542, 30184, 35438, 41340, 47957, 55328, 63525, 72590, 82600, 93600, 105672, 118864, 133263, 148920, 165927, 184338, 204250, 225720
Offset: 3

Views

Author

Martin Renner, Feb 07 2013

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> `if`(n mod 2 = 0, 1/24*n*(n-4)*(n-6)*(2*n-7), 1/24*n*(n-3)*(n-5)*(2*n-11)): seq (a(n), n=3..40);

Formula

a(n) = 1/24*n*(n-4)*(n-6)*(2*n-7) for n even.
a(n) = 1/24*n*(n-3)*(n-5)*(2*n-11) for n odd.
a(n) = A211380(n) - A000332(n).
G.f.: x^7*(2*x^2-3*x-7) / ((x-1)^5*(x+1)^2). [Colin Barker, Feb 14 2013]

A326278 Number of n-vertex, 2-edge multigraphs that are not nesting. Number of n-vertex, 2-edge multigraphs that are not crossing.

Original entry on oeis.org

0, 0, 1, 9, 34, 90, 195, 371, 644, 1044, 1605, 2365, 3366, 4654, 6279, 8295, 10760, 13736, 17289, 21489, 26410, 32130, 38731, 46299, 54924, 64700, 75725, 88101, 101934, 117334, 134415, 153295, 174096, 196944, 221969, 249305, 279090, 311466, 346579, 384579
Offset: 0

Views

Author

Gus Wiseman, Jun 23 2019

Keywords

Comments

Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d.

Examples

			The a(3) = 9 non-crossing multigraphs:
  {12,12}
  {12,13}
  {12,23}
  {13,12}
  {13,13}
  {13,23}
  {23,12}
  {23,13}
  {23,23}
		

Crossrefs

A326247(n) <= a(n) <= A000537(n).
The case for 2-edge simple graphs (rather than multigraphs) is A117662.

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{x_,y_},_,{z_,t_},_}/;x
    				

Formula

Conjectures from Colin Barker, Jun 25 2019: (Start)
G.f.: x^2*(1 + 4*x - x^2) / (1 - x)^5.
a(n) = (n*(3 - 4*n + n^3)) / 6 .
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>4.
(End)
Previous Showing 21-29 of 29 results.