A130014 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+881)^2 = y^2.
0, 43, 2440, 2643, 2860, 16443, 17620, 18879, 97980, 104839, 112176, 573199, 613176, 655939, 3342976, 3575979, 3825220, 19486419, 20844460, 22297143, 113577300, 121492543, 129959400, 661979143, 708112560, 757461019, 3858299320
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,6,-6,0,-1,1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{1,0,6,-6,0,-1,1},{0,43,2440,2643,2860,16443,17620},30] (* Harvey P. Dale, Aug 13 2015 *)
-
PARI
{forstep(n=0, 10000000, [1, 3], if(issquare(2*n^2+1762*n+776161), print1(n, ",")))}
Formula
a(n) = 6*a(n-3)-a(n-6)+1762 for n > 6; a(1)=0, a(2)=43, a(3)=2440, a(4)=2643, a(5)=2860, a(6)=16443.
G.f.: x*(43+2397*x+203*x^2-41*x^3-799*x^4-41*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 881*A001652(k) for k >= 0.
Extensions
Edited and two terms added by Klaus Brockhaus, Apr 21 2009
Comments