cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A130014 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+881)^2 = y^2.

Original entry on oeis.org

0, 43, 2440, 2643, 2860, 16443, 17620, 18879, 97980, 104839, 112176, 573199, 613176, 655939, 3342976, 3575979, 3825220, 19486419, 20844460, 22297143, 113577300, 121492543, 129959400, 661979143, 708112560, 757461019, 3858299320
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 15 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+881, y).
Corresponding values y of solutions (x, y) are in A159690.
For the generic case x^2+(x+p)^2 = y^2 with p = 2*m^2-1 a (prime) number in A066436 see A118673 or A129836.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (883+42*sqrt(2))/881 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (2052963+1343918*sqrt(2))/881^2 for n mod 3 = 0.

Crossrefs

Cf. A159690, A066436, A118673, A118674, A129836, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159691 (decimal expansion of (883+42*sqrt(2))/881), A159692 (decimal expansion of (2052963+1343918*sqrt(2))/881^2).

Programs

  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,43,2440,2643,2860,16443,17620},30] (* Harvey P. Dale, Aug 13 2015 *)
  • PARI
    {forstep(n=0, 10000000, [1, 3], if(issquare(2*n^2+1762*n+776161), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+1762 for n > 6; a(1)=0, a(2)=43, a(3)=2440, a(4)=2643, a(5)=2860, a(6)=16443.
G.f.: x*(43+2397*x+203*x^2-41*x^3-799*x^4-41*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 881*A001652(k) for k >= 0.

Extensions

Edited and two terms added by Klaus Brockhaus, Apr 21 2009

A157646 Positive numbers y such that y^2 is of the form x^2 + (x+31)^2 with integer x.

Original entry on oeis.org

25, 31, 41, 109, 155, 221, 629, 899, 1285, 3665, 5239, 7489, 21361, 30535, 43649, 124501, 177971, 254405, 725645, 1037291, 1482781, 4229369, 6045775, 8642281, 24650569, 35237359, 50370905, 143674045, 205378379, 293583149, 837393701
Offset: 1

Views

Author

Klaus Brockhaus, Mar 11 2009

Keywords

Comments

(-7,a(1)) and (A118674(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+31)^2 = y^2.
Lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
Lim_{n -> infinity} a(n)/a(n-1) = (33+8*sqrt(2))/31 for n mod 3 = {0, 2}.
Lim_{n -> infinity} a(n)/a(n-1) = (1539+850*sqrt(2))/31^2 for n mod 3 = 1.
For the generic case x^2+(x+p)^2=y^2 with p=2*m^2-1 a prime number in A066436, m>=2, the x values are given by the sequence defined by: a(n)=6*a(n-3)-a(n-6)+2p with a(1)=0, a(2)=2m+1, a(3)=6m^2-10m+4, a(4)=3p, a(5)=6m^2+10m+4, a(6)=40m^2-58m+21.Y values are given by the sequence defined by: b(n)=6*b(n-3)-b(n-6) with b(1)=p, b(2)=2m^2+2m+1, b(3)=10m^2-14m+5, b(4)=5p, b(5)=10m^2+14m+5, b(6)=58m^2-82m+29. - Mohamed Bouhamida, Sep 09 2009

Examples

			(-7, a(1)) = (-7, 25) is a solution: (-7)^2+(-7+31)^2 = 49+576 = 625 = 25^2.
(A118674(1), a(2)) = (0, 31) is a solution: 0^2+(0+31)^2 = 961 = 31^2.
(A118674(3), a(4)) = (60, 109) is a solution: 60^2+(60+31)^2 = 3600+8281 = 11881 = 109^2.
		

Crossrefs

Cf. A118674, A001653, A002193 (decimal expansion of sqrt(2)), A156035 (decimal expansion of 3+2*sqrt(2)), A157647 (decimal expansion of (33+8*sqrt(2))/31), A157648 (decimal expansion of (1539+850*sqrt(2))/31^2).

Programs

  • Magma
    I:=[25,31,41,109,155,221]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..50]]; // G. C. Greubel, Mar 31 2018
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1},{25,31,41,109,155,221},40] (* Harvey P. Dale, Oct 12 2017 *)
  • PARI
    {forstep(n=-8, 840000000, [1, 3], if(issquare(2*n^2+62*n+961, &k), print1(k, ",")))};
    

Formula

a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=25, a(2)=31, a(3)=41, a(4)=109, a(5)=155, a(6)=221.
G.f.: (1-x)*(25 + 56*x + 97*x^2 + 56*x^3 + 25*x^4)/(1 - 6*x^3 + x^6).
a(3*k-1) = 31*A001653(k) for k >= 1.

A157647 Decimal expansion of (33+8*sqrt(2))/31.

Original entry on oeis.org

1, 4, 2, 9, 4, 7, 4, 4, 6, 7, 7, 0, 9, 1, 8, 5, 8, 1, 9, 0, 4, 5, 5, 9, 7, 0, 9, 0, 1, 1, 8, 6, 3, 1, 7, 6, 2, 2, 1, 1, 5, 2, 8, 2, 2, 5, 9, 0, 3, 7, 2, 8, 5, 3, 5, 0, 1, 3, 3, 3, 6, 7, 0, 6, 5, 7, 8, 2, 5, 3, 5, 4, 2, 8, 2, 8, 9, 3, 0, 8, 4, 8, 7, 3, 5, 5, 8, 3, 8, 7, 9, 8, 2, 6, 4, 8, 8, 1, 4, 7, 8, 0, 2, 5, 8
Offset: 1

Views

Author

Klaus Brockhaus, Mar 11 2009

Keywords

Comments

lim_{n -> infinity} b(n)/b(n-1) = (33+8*sqrt(2))/31 for n mod 3 = {1, 2}, b = A118674.
lim_{n -> infinity} b(n)/b(n-1) = (33+8*sqrt(2))/31 for n mod 3 = {0, 2}, b = A157646.

Examples

			(33+8*sqrt(2))/31 = 1.42947446770918581904...
		

Crossrefs

A118674, A157646, A002193 (decimal expansion of sqrt(2)), A157648 (decimal expansion of (1539+850*sqrt(2))/31^2).

Programs

  • Magma
    (33+8*Sqrt(2))/31; // G. C. Greubel, Mar 30 2018
  • Maple
    with(MmaTranslator[Mma]): Digits:=100:
    RealDigits(evalf((33+8*sqrt(2))/31))[1]; # Muniru A Asiru, Mar 31 2018
  • Mathematica
    RealDigits[(33+8*Sqrt[2])/31,10,120][[1]] (* Harvey P. Dale, Mar 02 2014 *)
  • PARI
    (33+8*sqrt(2))/31 \\ G. C. Greubel, Mar 30 2018
    

Formula

(33+8*sqrt(2))/31 = (8+sqrt(2))/(8-sqrt(2)).

A157648 Decimal expansion of (1539+850*sqrt(2))/31^2.

Original entry on oeis.org

2, 8, 5, 2, 3, 2, 2, 0, 8, 9, 5, 0, 7, 9, 4, 0, 4, 6, 9, 8, 0, 3, 7, 8, 2, 9, 5, 0, 6, 5, 3, 7, 3, 9, 1, 9, 5, 4, 0, 5, 0, 1, 6, 7, 4, 7, 2, 1, 1, 6, 6, 0, 6, 2, 6, 6, 3, 9, 1, 0, 2, 7, 8, 5, 9, 4, 3, 9, 3, 6, 1, 1, 5, 1, 8, 5, 0, 0, 6, 2, 2, 5, 8, 3, 0, 2, 0, 7, 4, 9, 6, 5, 4, 3, 6, 9, 9, 6, 2, 2, 0, 8, 6, 1, 2
Offset: 1

Views

Author

Klaus Brockhaus, Mar 11 2009

Keywords

Comments

Limit_{n -> oo} b(n)/b(n-1) = (1539+850*sqrt(2))/31^2 for n mod 3 = 0, b = A118674.
Limit_{n -> oo} b(n)/b(n-1) = (1539+850*sqrt(2))/31^2 for n mod 3 = 1, b = A157646.

Examples

			2.85232208950794046980...
		

Crossrefs

Cf. A118674, A157646, A002193 (decimal expansion of sqrt(2)), A156035 (decimal expansion of 3+2*sqrt(2)), A157647 (decimal expansion of (33+8*sqrt(2))/31).

Programs

  • Magma
    (1539+850*Sqrt(2))/31^2; // G. C. Greubel, Mar 30 2018
  • Maple
    with(MmaTranslator[Mma]): Digits:=100:
    RealDigits(evalf((1539+850*sqrt(2))/31^2))[1]; # Muniru A Asiru, Mar 31 2018
  • Mathematica
    RealDigits[(1539+850*Sqrt[2])/31^2, 10, 100][[1]] (* G. C. Greubel, Mar 30 2018 *)
  • PARI
    (1539+850*sqrt(2))/31^2 \\ G. C. Greubel, Mar 30 2018
    

Formula

Equals (50+17*sqrt(2))/(50-17*sqrt(2)).
Equals (3+2*sqrt(2))*(8-sqrt(2))^2/(8+sqrt(2))^2.

A201916 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+2737)^2 = y^2.

Original entry on oeis.org

0, 75, 203, 323, 552, 708, 1020, 1127, 1311, 1428, 1608, 1820, 1955, 2336, 2675, 3128, 3311, 3627, 3927, 4140, 4508, 4743, 5535, 6003, 6800, 7280, 7848, 8211, 8588, 9240, 9860, 11063, 11895, 13583, 14168, 15180, 15827, 16827, 18011, 18768, 20915, 22836
Offset: 1

Views

Author

T. D. Noe, Feb 09 2012

Keywords

Comments

Note that 2737 = 7 * 17 * 23, the product of the first three distinct primes in A058529 (and A001132) and hence the smallest such number. This sequence satisfies a linear difference equation of order 55 whose 55 initial terms can be found by running the Mathematica program.
There are many sequences like this one. What determines the order of the linear difference equation? All primes p have order 7. For those p, it appears that p^2 has order 11, p^3 order 15, and p^i order 3+4*i. It appears that for semiprimes p*q (with p > q), the order is 19. What is the next term of the sequence beginning 3, 7, 19, 55, 163? This could be sequence A052919, which is 1 + 2*3^f, where f is the number of primes.
The crossref list is thought to be complete up to Feb 14 2012.

Crossrefs

Cf. A001652 (1), A076296 (7), A118120 (17), A118337 (23), A118674 (31).
Cf. A129288 (41), A118675 (47), A118554 (49), A118673 (71), A129289 (73).
Cf. A118676 (79), A129298 (89), A129836 (97), A157119 (103), A161478 (113).
Cf. A129837 (119), A129992 (127), A129544 (137), A161482 (151).
Cf. A206426 (161), A130608 (167), A161486 (191), A185394 (193).
Cf. A129993 (199), A198294 (217), A130609 (223), A129625 (233).
Cf. A204765 (239), A129991 (241), A207058 (263), A129626 (281).
Cf. A205644 (287), A207059 (289), A129640 (313), A205672 (329).
Cf. A129999 (337), A118611 (343), A130610 (359), A207060 (401).
Cf. A129641 (409), A207061 (433), A130645 (439), A130004 (449).
Cf. A129642 (457), A129725 (521), A101152 (569), A130005 (577).
Cf. A207075 (479), A207076 (487), A207077 (497), A207078 (511).
Cf. A111258 (601), A115135 (617), A130013 (647), A130646 (727).
Cf. A122694 (761), A123654 (809), A129010 (833), A130647 (839).
Cf. A129857 (857), A130014 (881), A129974 (937), A129975 (953).
Cf. A130017 (967), A118630 (2401), A118576 (16807).

Programs

  • Mathematica
    d = 2737; terms = 100; t = Select[Range[0, 55000], IntegerQ[Sqrt[#^2 + (#+d)^2]] &]; Do[AppendTo[t, t[[-1]] + 6*t[[-27]] - 6*t[[-28]] - t[[-54]] + t[[-55]]], {terms-55}]; t

Formula

a(n) = a(n-1) + 6*a(n-27) - 6*a(n-28) - a(n-54) + a(n-55), where the 55 initial terms can be computed using the Mathematica program.
G.f.: x^2*(73*x^53 +116*x^52 +100*x^51 +171*x^50 +104*x^49 +184*x^48 +57*x^47 +92*x^46 +55*x^45 +80*x^44 +88*x^43 +53*x^42 +139*x^41 +113*x^40 +139*x^39 +53*x^38 +88*x^37 +80*x^36 +55*x^35 +92*x^34 +57*x^33 +184*x^32 +104*x^31 +171*x^30 +100*x^29 +116*x^28 +73*x^27 -363*x^26 -568*x^25 -480*x^24 -797*x^23 -468*x^22 -792*x^21 -235*x^20 -368*x^19 -213*x^18 -300*x^17 -316*x^16 -183*x^15 -453*x^14 -339*x^13 -381*x^12 -135*x^11 -212*x^10 -180*x^9 -117*x^8 -184*x^7 -107*x^6 -312*x^5 -156*x^4 -229*x^3 -120*x^2 -128*x -75) / ((x -1)*(x^54 -6*x^27 +1)). - Colin Barker, May 18 2015
Previous Showing 11-15 of 15 results.