cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 45 results. Next

A128371 a(n) = least k such that the remainder when 31^k is divided by k is n.

Original entry on oeis.org

2, 29, 7, 29787, 13, 113413, 51, 23, 11, 3309, 38, 19, 21, 17, 22, 115, 118, 37237, 261, 60212617, 94, 29769, 134, 51205605391, 26, 35, 209, 549, 466, 1558391, 37, 5033228393, 58, 39, 926, 565, 57, 1561, 922, 119, 46, 2512157, 111, 949, 76, 85
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Crossrefs

Programs

  • Mathematica
    t = Table[0, {10000} ]; k = 1; While[ k < 4750000000, a = PowerMod[31, k, k]; If[a < 10001 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t (* Robert G. Wilson v, Aug 06 2009 *)

Extensions

More terms from Ryan Propper, Mar 24 2007
a(494) = 14353729267 = 64609 * 222163. a(498) = 9547024387, a(540) = 29711794103. - Daniel Morel, Jun 17 2010. a(618) = 15150617101, a(750) = 13728669221. - Daniel Morel, Jun 28 2010

A128369 a(n) = least k such that the remainder when 29^k is divided by k is n.

Original entry on oeis.org

2, 3, 13, 5, 22, 23, 11, 9, 26, 19, 51, 17, 46, 15, 118, 178523, 152, 92634008921, 102, 24369, 82, 2873, 93, 25, 34, 27, 74, 11227, 31, 39259, 830, 69, 136, 817, 62, 2429, 66, 24351, 802, 121, 184, 3405997613, 714, 45, 398, 5846879, 794, 221, 114
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

a(408) = 9848641373 = 60343 * 163211.
a(756) = 10012502599 = 11 * 19 * 47906711.
a(886) = 12256265747, a(966) = 10085567837. - Daniel Morel, Jun 08 2010
a(378) = 31113438371, a(492) = 18377996647, a(730) = 22778710711. - Daniel Morel, Jul 05 2010
a(802) = 20290196677, a(826) = 21466370573. - Daniel Morel, Aug 24 2010

Crossrefs

Programs

  • Mathematica
    t = Table[0, {10000} ]; k = 1; While[ k < 4000000000, a = PowerMod[29, k, k]; If[a < 10001 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t (* Robert G. Wilson v, Aug 06 2009 *)

A178194 Smallest k such that 33^k mod k = n.

Original entry on oeis.org

1, 2, 31, 5, 29, 7, 21, 13, 13684967, 10, 23, 14, 15, 538, 19, 42, 17, 35, 25, 49, 16861, 60, 55, 26, 1157, 38, 511, 54, 30197665, 106, 14691, 46, 155, 37, 18791, 62, 369, 164, 145, 93, 63517, 92, 115, 1046, 3113077, 58, 1376107, 1042, 105, 50, 221
Offset: 0

Views

Author

Artur Jasinski, May 22 2010

Keywords

Comments

smallest k such that m^k mod k = n
m=2 see A036236
m=3 see A078457
m=4 see A119678
m=5 see A119679
m=6 see A127816
m=7 see A119715
m=8 see A119714
m=9 see A127817
m=10 see A127818
m=11 see A127819
m=12 see A127820
m=13 see A127821
m=14 see A128154
m=15 see A128155
m=16 see A128156
m=17 see A128157
m=18 see A128158
m=19 see A128159
m=20 see A128160
m=21 see A128361
m=22 see A128362
m=23 see A128363
m=24 see A128364
m=25 see A128365
m=26 see A128366
m=27 see A128367
m=28 see A128368
m=29 see A128369
m=30 see A128370
m=31 see A128371
m=32 see A128372
m=33 see A178194
m=34 see A178195
m=35 see A178196
m=36 see A178197
m=37 see A178198
m=38 see A178199
m=39 see A178200
m=40 see A178201
m=41 see A178202

Crossrefs

see comment line.

Programs

  • Mathematica
    aa = {}; Do[k = 1; While[PowerMod[33, k, k] != n, k++ ]; Print[k]; AppendTo[aa, k], {n, 0, 50}]; aa

A178202 Smallest k such that 41^k mod k = n.

Original entry on oeis.org

1, 2, 3, 19, 37, 76, 7, 17, 9, 22, 31, 15, 29, 77, 309, 34, 7194589, 26, 23, 341, 21, 55, 799, 1658, 476983, 46, 27, 427, 629, 52, 142241, 138, 68889, 136, 1897, 129, 30935, 44, 19303, 1642, 34943, 43, 8858994648397, 102, 117, 436, 7715, 86, 49
Offset: 0

Views

Author

Artur Jasinski, May 23 2010

Keywords

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[k = 1; While[PowerMod[41, k, k] != n, k++ ]; Print[{n, k}]; AppendTo[aa, k], {n, 1, 50}]; aa

Extensions

a(0)=1 prepended and a(42) added by Max Alekseyev, Feb 04 2012

A128370 a(n) = least k such that the remainder of 30^k divided by k is n.

Original entry on oeis.org

29, 7, 26997, 13, 8471, 33, 23, 11, 721, 55, 19, 39, 17, 886, 21, 26, 803, 98, 13289, 22, 51, 878, 1141, 146, 35, 38, 111, 218, 515267673651961, 31, 3212679202339, 56, 267, 866, 4367, 42, 10129, 862, 57, 86, 42691, 13479, 949, 214, 95, 77, 7633, 52, 1469, 170, 429, 68, 2791229, 94, 215, 422, 3849, 842, 9773, 140
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Crossrefs

Programs

  • Mathematica
    t = Table[0, {10000} ]; k = 1; While[ k < 5100000000, a = PowerMod[30, k, k]; If[a < 10001 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t (* Robert G. Wilson v, Aug 06 2009 *)

Extensions

Terms a(29) onward from Max Alekseyev, Mar 22 2012

A126762 a(n) is the least k > n such that the remainder when n^k is divided by k is n.

Original entry on oeis.org

2, 3, 5, 5, 7, 7, 11, 9, 11, 11, 13, 13, 17, 15, 17, 17, 19, 19, 23, 21, 23, 23, 29, 25, 28, 27, 29, 29, 31, 31, 37, 33, 37, 35, 37, 37, 41, 39, 41, 41, 43, 43, 47, 45, 47, 47, 53, 49, 53, 51, 53, 53, 59, 55, 59, 57, 59, 59, 61, 61, 67, 63, 67, 65, 67, 67, 71, 69, 71, 71, 73, 73
Offset: 1

Views

Author

Alexander Adamchuk, Feb 17 2007

Keywords

Comments

a(n-1) = n for n = {2,3,5,7,9,11,13,15,17,19,21,23,25,27,29,...} = 2 together with odd numbers n > 1.
a(n) coincides with A082048(n) up to n = 24.
a(n) is the smallest number k > n such that n^k == n (mod k). Conjecture: a(n) is the smallest number k > n such that n^(k-1) == 1 (mod k). Thus a(n) is coprime to n. - Thomas Ordowski, Aug 03 2018

Crossrefs

Cf. A128149 = Least k such that n^k (mod k) = n-1. Cf. A128172 = Least k such that n^k (mod k) = n+1. Cf. A036236, A078457, A119678, A119679, A127816, A119715, A119714, A127817, A127818, A127819, A127820, A127821, A128154, A128155, A128156, A128157, A128158, A128159, A128160. Cf. A082048 = least number greater than n having greater smallest prime factor than that of n.

Programs

  • Mathematica
    Table[Min[Select[Range[101],PowerMod[n,#,# ]==n&]],{n,1,100}]
    lkgn[n_]:=Module[{k=1},While[PowerMod[n,k,k]!=n,k++];k]; Array[lkgn,80] (* Harvey P. Dale, May 25 2021 *)

Extensions

Name clarified by Thomas Ordowski, Aug 03 2018

A177495 a(n) is the least k such that the remainder when 100^k is divided by k is n.

Original entry on oeis.org

3, 7, 97, 6, 19, 38, 31, 23, 13, 15, 89, 22, 29, 43, 17, 24, 83, 41, 19003, 580, 79, 42, 1903, 58, 35, 37, 73, 36, 71, 49, 999969, 56, 67, 66, 145, 76, 411, 578, 61, 60, 59, 494, 51, 262, 55, 158, 53, 52, 57, 398, 15673, 69, 1589, 9946, 65, 88, 20940211, 366, 391
Offset: 1

Views

Author

Alexander Adamchuk, May 10 2010

Keywords

Crossrefs

Programs

  • Mathematica
    t = Table[0, {70}]; k = 1; While[k < 210000000, a = PowerMod[100, k, k]; If[a < 71 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t
    Table[Module[{k=1},While[PowerMod[100,k,k]!=n,k++];k],{n,60}] (* Harvey P. Dale, Jun 06 2018 *)

A178195 Smallest k such that 34^k mod k = n.

Original entry on oeis.org

1, 3, 1154, 31, 5, 29, 7, 39297, 13, 19055, 18, 23, 22, 21, 535, 19, 20, 62537, 1138, 45, 142, 2092793, 42, 19547, 25, 39279, 50, 749, 36, 39055, 1126, 39, 188, 93641, 35, 634815079, 70, 171, 86, 355, 52, 65387, 713, 69, 148, 253, 74
Offset: 0

Views

Author

Artur Jasinski, May 23 2010

Keywords

Comments

First unknown term is a(47), where there are no solutions < 2904290724.
For a catalog of sequences of the kind "smallest k such that m^k mod k = n," see A178194.

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[k = 1; While[PowerMod[34, k, k] != n, k++ ]; Print[k]; AppendTo[aa, k], {n, 0, 50}]; aa

A178196 Smallest k such that 35^k mod k = n.

Original entry on oeis.org

1, 2, 3, 26, 31, 10, 29, 14, 9, 13, 55, 57, 23, 92, 21, 22, 19, 99, 187, 134, 2105, 28, 169, 1202, 593791, 30, 27, 1198, 203, 46, 695, 66, 42843, 248, 4023706859, 37, 449467, 132, 327, 1186, 565, 74, 581, 394, 14277, 110, 59867, 62, 1311139, 56, 75
Offset: 0

Views

Author

Artur Jasinski, May 23 2010

Keywords

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[k = 1; While[PowerMod[35, k, k] != n, k++ ]; Print[k]; AppendTo[aa, k], {n, 0, 50}]; aa

Extensions

Terms a(34) onward from Max Alekseyev, Feb 04 2012

A178197 Smallest k such that 36^k mod k = n.

Original entry on oeis.org

1, 5, 17, 11, 34, 31, 10, 29, 14, 213, 13, 1585, 39, 23, 1282, 21, 20, 19, 142, 56413361, 22, 445, 26, 169, 87, 341, 50, 33, 332, 33607, 57, 55329163, 158, 46623, 1262, 33763, 37, 167987937385549, 74, 123, 284, 12091, 51, 119, 626, 531, 2630, 960641, 104, 473, 98, 75, 116, 424381, 174, 7751, 62, 951, 781, 364789, 206, 545, 1234, 93, 77, 205591, 78, 51367, 614, 159, 1226, 623, 207, 23147, 94, 11847, 100, 3551, 161, 332089, 176, 99, 143, 361841, 202, 73969, 590, 129, 302
Offset: 0

Views

Author

Artur Jasinski, May 23 2010

Keywords

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[k = 1; While[PowerMod[36, k, k] != n, k++ ]; Print[k]; AppendTo[aa, k], {n, 0, 50}]; aa

Extensions

Terms a(37) onward from Max Alekseyev, May 07 2012
Previous Showing 31-40 of 45 results. Next