A035598
Number of points of L1 norm 4 in cubic lattice Z^n.
Original entry on oeis.org
0, 2, 16, 66, 192, 450, 912, 1666, 2816, 4482, 6800, 9922, 14016, 19266, 25872, 34050, 44032, 56066, 70416, 87362, 107200, 130242, 156816, 187266, 221952, 261250, 305552, 355266, 410816, 472642, 541200, 616962, 700416, 792066
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - _N. J. A. Sloane_, Feb 13 2013
- Milan Janjic and Boris Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014), Article 14.3.5.
- Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
[( 2*n^4 +4*n^2 )/3: n in [0..40]]; // Vincenzo Librandi, Apr 22 2012
-
f := proc(d,m) local i; sum( 2^i*binomial(d,i)*binomial(m-1,i-1),i=1..min(d,m)); end; # n=dimension, m=norm
-
CoefficientList[Series[2*x*(1+x)^3/(1-x)^5,{x,0,40}],x] (* Vincenzo Librandi, Apr 22 2012 *)
LinearRecurrence[{5,-10,10,-5,1},{0,2,16,66,192},50] (* Harvey P. Dale, Dec 11 2019 *)
-
a(n)=2*n^2*(n^2+2)/3 \\ Charles R Greathouse IV, Dec 07 2011
A035599
Number of points of L1 norm 5 in cubic lattice Z^n.
Original entry on oeis.org
0, 2, 20, 102, 360, 1002, 2364, 4942, 9424, 16722, 28004, 44726, 68664, 101946, 147084, 207006, 285088, 385186, 511668, 669446, 864008, 1101450, 1388508, 1732590, 2141808, 2625010, 3191812, 3852630, 4618712, 5502170, 6516012
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
- M. Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - _N. J. A. Sloane_, Feb 13 2013
- M. Janjic, B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5.
- Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
-
[(4*n^4+20*n^2+6)*n/15: n in [0..30]]; // Vincenzo Librandi, Apr 23 2012
-
f := proc(d,m) local i; sum( 2^i*binomial(d,i)*binomial(m-1,i-1),i=1..min(d,m)); end; # n=dimension, m=norm
-
CoefficientList[Series[2*x*(1+x)^4/(1-x)^6,{x,0,33}],x] (* Vincenzo Librandi, Apr 23 2012 *)
LinearRecurrence[{6,-15,20,-15,6,-1},{0,2,20,102,360,1002},40] (* Harvey P. Dale, Dec 30 2023 *)
-
a(n)=(4*n^5+20*n^3+6*n)/15 \\ Charles R Greathouse IV, Dec 07 2011
A121306
Array read by antidiagonals: a(m,n) = a(m,n-1)+a(m-1,n) but with initialization values a(0,0)=0, a(m>=1,0)=1, a(0,1)=1, a(0,n>1)=0.
Original entry on oeis.org
2, 2, 3, 2, 5, 4, 2, 7, 9, 5, 2, 9, 16, 14, 6, 2, 11, 25, 30, 20, 7, 2, 13, 36, 55, 50, 27, 8, 2, 15, 49, 91, 105, 77, 35, 9, 2, 17, 64, 140, 196, 182, 112, 44, 10, 19, 81, 204, 336, 378, 294, 156, 54, 100, 285, 540, 714, 672, 450, 210, 385, 825, 1254, 1386, 1122
Offset: 0
Array begins
2 2 2 2 2 2 2 2 2 ...
3 5 7 9 11 13 15 17 19 ...
4 9 16 25 36 49 64 81 100 ...
5 14 30 55 91 140 204 285 385 ...
6 20 50 105 196 336 540 825 1210 ...
7 27 77 182 378 714 1254 2079 3289 ...
Cf.
A119800,
A007318,
A006527,
A005408,
A000290,
A000330,
A002415,
A005585,
A040977,
A050486,
A053347,
A000027,
A000096,
A005581,
A005582,
A005583,
A005584.
-
=Z(-1)S+ZS(-1). The very first row (not included into the table) contains the initialization values: a(0,1)=1, a(0,n>=2)=0. The very first column (not included into the table) contains the initialization values: a(m>=1,0)=1. The value a(0,0)=0 does not enter into the table.
A121547
Fourth slice along the 1-2-plane in the cube a(m,n,o) = a(m-1,n,o) + a(m,n-1,o) + a(m,n,o-1) for which the first slice is Pascal's triangle (slice read by antidiagonals).
Original entry on oeis.org
0, 0, 1, 0, 4, 4, 0, 10, 20, 10, 0, 20, 60, 60, 20, 0, 35, 140, 210, 140, 35, 0, 56, 280, 560, 560, 280, 56, 0, 84, 504, 1260, 1680, 1260, 504, 84, 0, 120, 840, 2520, 4200, 4200, 2520, 840, 120, 0, 165, 1320, 4620, 9240, 11550, 9240, 4620, 1320, 165, 0, 220, 1980, 7920, 18480, 27720, 27720, 18480, 7920, 1980, 220
Offset: 0
The second row is 1, 4, 10, 20, 35, 56, 84, 120, 165, 220 = A000292, i.e., Tetrahedral (or pyramidal) numbers: binomial(n+2,3) = n(n+1)(n+2)/6 (core).
The third row is 4, 20, 60, 140, 280, 504, 840, 1320, 1980, 2860 = A033488 = n*(n+1)*(n+2)*(n+3)/6.
The main diagonal is 0, 4, 60, 560, 4200, 27720, 168168, 960960, 5250960, 27713400 = {0} U A002803*4.
Triangle starts:
0
0, 1
0, 4, 4
0, 10, 20, 10
0, 20, 60, 60, 20
0, 35, 140, 210, 140, 35
0, 56, 280, 560, 560, 280, 56
0, 84, 504, 1260, 1680, 1260, 504, 84
-
T:=(n, k)->binomial(n+3, 3)*binomial(n, k): seq(print(seq(T(n-1, k-1), k=0..n)), n=0..10); # Georg Fischer, Jul 31 2023
a(55)-a(56) corrected and more terms from
Georg Fischer, Jul 31 2023
Comments