cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A121725 Generalized central coefficients for k=3.

Original entry on oeis.org

1, 1, 10, 19, 190, 442, 4420, 11395, 113950, 312814, 3128140, 8960878, 89608780, 264735892, 2647358920, 8006545891, 80065458910, 246643289830, 2466432898300, 7711583225338, 77115832253380, 244082045341036, 2440820453410360, 7805301802531534
Offset: 0

Views

Author

Paul Barry, Aug 17 2006

Keywords

Comments

Hankel transform of a(n) is 9^binomial(n+1,2). Case k=3 of T(n,k) = (1/Pi)*2*k^2*(2*k)^n*Integral_{x=-1..1} x^n*sqrt(1-x^2)/(1+k^2-2*k*x) dx. T(n,k) has Hankel transform (k^2)^binomial(n+1,2). k=1 corresponds to C(n, floor(n/2)).
Expansion of c(9*x^2)/(1-x*c(9*x^2)), where c(x) is the g.f. of A000108. Reversion of x*(1+x)/(1+2*x+10*x^2). - Philippe Deléham, Nov 09 2007

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-36*x^2))/(18*x^2-x*(1-Sqrt(1-36*x^2))) )); // G. C. Greubel, Nov 07 2022
    
  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-4*9*x^2])/(2*9*x^2-x*(1-Sqrt[1-4*9*x^2])), {x,0,40}], x] (* Vaclav Kotesovec, Feb 13 2014 *)
  • SageMath
    def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1)
    def A121725(n): return sum(9^(n-k)*A120730(n,k) for k in range(n+1))
    [A121725(n) for n in range(41)] # G. C. Greubel, Nov 07 2022

Formula

a(n) = (1/Pi)*18*6^n*Integral_{x=-1..1} x^n*sqrt(1-x^2)/(10-6*x) dx.
a(n) = Sum_{k=0..floor(n/2)} A009766(n-k,k)*3^2k. - Philippe Deléham, Aug 18 2006
a(n) = Sum_{k=0..n} A120730(n,k)*9^(n-k). - Philippe Deléham, Nov 09 2007
Conjecture: (n+1)*a(n) = 10*(n+1)*a(n-1) + 36*(n-2)*a(n-2) - 360*(n-2)*a(n-3). - R. J. Mathar, Nov 26 2012
From Vaclav Kotesovec, Feb 13 2014: (Start)
a(n) ~ (4+(-1)^n) * 2^(n-7/2) * 3^(n+2) / (n^(3/2) * sqrt(Pi)).
G.f.: (1 - sqrt(1 - 36*x^2))/(18*x^2 - x*(1 - sqrt(1 - 36*x^2))). (End)

Extensions

More terms from Vincenzo Librandi, Feb 15 2014

A156361 a(2*n+2) = 7*a(2*n+1), a(2*n+1) = 7*a(2*n) - 6^n*A000108(n), a(0) = 1.

Original entry on oeis.org

1, 6, 42, 288, 2016, 14040, 98280, 686880, 4808160, 33638976, 235472832, 1647983232, 11535882624, 80745019776, 565215138432, 3956385876480, 27694701135360, 193860506096640, 1357023542676480, 9499115800977408
Offset: 0

Views

Author

Philippe Deléham, Feb 08 2009

Keywords

Comments

Hankel transform is 6^C(n+1, 2).

Crossrefs

Programs

  • Magma
    [n le 3 select Factorial(n+4)/120 else (7*n*Self(n-1) + 24*(n-3)*Self(n-2) - 168*(n-3)*Self(n-3))/n: n in [1..30]]; // G. C. Greubel, Nov 09 2022
    
  • Maple
    A156361 := proc(n)
        option remember;
        local nh;
        if n= 0 then
            1;
        elif  type(n,'even') then
            7*procname(n-1);
        else
            nh := floor(n/2) ;
            7*procname(n-1)-6^nh*A000108(nh) ;
        end if;
    end proc: # R. J. Mathar, Jul 21 2016
  • Mathematica
    a[n_]:= a[n]= If[n==0, 1, 7*a[n-1] -If[EvenQ[n], 0, 6^((n-1)/2)* CatalanNumber[(n-1)/2]]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Aug 04 2022 *)
  • SageMath
    def a(n): # a = A156361
        if (n==0): return 1
        elif (n%2==1): return 7*a(n-1) - 6^((n-1)/2)*catalan_number((n-1)/2)
        else: return 7*a(n-1)
    [a(n) for n in (0..30)] # G. C. Greubel, Nov 09 2022

Formula

a(n) = Sum{k=0..n} A120730(n,k) * 6^k.
(n+1)*a(n) = 7*(n+1)*a(n-1) + 24*(n-2)*a(n-2) - 168*(n-2)*a(n-3). - R. J. Mathar, Jul 21 2016

A156362 a(2*n+2) = 8*a(2*n+1), a(2*n+1) = 8*a(2*n) - 7^n*A000108(n), a(0)=1.

Original entry on oeis.org

1, 7, 56, 441, 3528, 28126, 225008, 1798349, 14386792, 115060722, 920485776, 7363180314, 58905442512, 471228010428, 3769824083424, 30158239367445, 241265914939560, 1930119075851050, 15440952606808400, 123527424655229966
Offset: 0

Views

Author

Philippe Deléham, Feb 08 2009

Keywords

Comments

Hankel transform is 7^C(n+1,2).

Crossrefs

Programs

  • Magma
    [n le 3 select Factorial(n+5)/720 else (8*n*Self(n-1) + 28*(n-3)*Self(n-2) - 224*(n-3)*Self(n-3))/n: n in [1..30]]; // G. C. Greubel, Nov 09 2022
    
  • Mathematica
    a[n_]:= a[n]= If[n==0, 1, If[OddQ[n], 8*a[n-1] -7^((n-1)/2)*CatalanNumber[(n-1)/2], 8*a[n-1]]]; Table[a[n], {n, 0, 30}] (* G. C. Greubel, Nov 09 2022 *)
  • SageMath
    def a(n): # a = A156362
        if (n==0): return 1
        elif (n%2==1): return 8*a(n-1) - 7^((n-1)/2)*catalan_number((n-1)/2)
        else: return 8*a(n-1)
    [a(n) for n in (0..30)] # G. C. Greubel, Nov 09 2022

Formula

a(n) = Sum_{k=0..n} A120730(n,k) * 7^k.
a(n) = ( 8*(n+1)*a(n-1) + 28*(n-2)*a(n-2) - 224*(n-2)*a(n-3) )/(n+1). - G. C. Greubel, Nov 09 2022

A165408 An aerated Catalan triangle.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 0, 0, 3, 0, 1, 0, 0, 2, 0, 4, 0, 1, 0, 0, 0, 5, 0, 5, 0, 1, 0, 0, 0, 0, 9, 0, 6, 0, 1, 0, 0, 0, 5, 0, 14, 0, 7, 0, 1, 0, 0, 0, 0, 14, 0, 20, 0, 8, 0, 1, 0, 0, 0, 0, 0, 28, 0, 27, 0, 9, 0, 1, 0, 0, 0, 0, 14, 0, 48, 0, 35, 0, 10, 0, 1, 0, 0, 0, 0, 0, 42, 0, 75, 0, 44, 0, 11, 0, 1
Offset: 0

Views

Author

Paul Barry, Sep 17 2009

Keywords

Comments

Aeration of A120730. Row sums are A165407.
T(n,k) is the number of lattice paths from (0,0) to (k,(n-k)/2) that do not go above the diagonal x=y using steps in {(1,0), (0,1)}. - Alois P. Heinz, Sep 20 2022

Examples

			Triangle T(n,k) begins:
  1;
  0, 1;
  0, 0, 1;
  0, 1, 0, 1;
  0, 0, 2, 0,  1;
  0, 0, 0, 3,  0,  1;
  0, 0, 2, 0,  4,  0,  1;
  0, 0, 0, 5,  0,  5,  0,  1;
  0, 0, 0, 0,  9,  0,  6,  0,  1;
  0, 0, 0, 5,  0, 14,  0,  7,  0, 1;
  0, 0, 0, 0, 14,  0, 20,  0,  8, 0,  1;
  0, 0, 0, 0,  0, 28,  0, 27,  0, 9,  0, 1;
  0, 0, 0, 0, 14,  0, 48,  0, 35, 0, 10, 0, 1;
  ...
		

Crossrefs

Programs

  • Magma
    A165408:= func< n,k | n le 3*k select Binomial(Floor((n+k)/2), k)*((3*k-n)/2 +1)*(1+(-1)^(n-k))/(2*(k+1)) else 0 >;
    [A165408(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Nov 09 2022
    
  • Maple
    b:= proc(x, y) option remember; `if`(y<=x, `if`(x=0, 1,
          b(x-1, y)+`if`(y>0, b(x, y-1), 0)), 0)
        end:
    T:= (n, k)-> `if`((n-k)::even, b(k, (n-k)/2), 0):
    seq(seq(T(n, k), k=0..n), n=0..14);  # Alois P. Heinz, Sep 20 2022
  • Mathematica
    b[x_, y_]:= b[x, y]= If[y<=x, If[x==0, 1, b[x-1, y] + If[y>0, b[x, y-1], 0]], 0];
    T[n_, k_]:= If[EvenQ[n-k], b[k, (n-k)/2], 0];
    Table[T[n, k], {n,0,14}, {k,0,n}]//Flatten (* Jean-François Alcover, Oct 08 2022, after Alois P. Heinz *)
  • SageMath
    def A165408(n,k): return 0 if (n>3*k) else binomial(int((n+k)/2), k)*((3*k-n+2)/2 )*(1+(-1)^(n-k))/(2*(k+1))
    flatten([[A165408(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Nov 09 2022

Formula

T(n,k) = if(n<=3k, C((n+k)/2, k)*((3*k-n)/2 + 1)*(1 + (-1)^(n-k))/(2*(k+1)), 0).
G.f.: 1/(1-x*y-x^3*y/(1-x^3*y/(1-x^3*y/(1-x^3*y/(1-... (continued fraction).
Sum_{k=0..n} T(n, k) = A165407(n).
From G. C. Greubel, Nov 09 2022: (Start)
Sum_{k=0..floor(n/2)} T(n-k, k) = (1+(-1)^n)*A001405(n/2)/2.
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (1+(-1)^n)*A105523(n/2)/2.
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^n*A165407(n).
Sum_{k=0..n} 2^k*T(n, k) = A165409(n).
T(n, n-2) = A001477(n-2), n >= 2.
T(2*n, n) = (1+(-1)^n)*A174687(n/2)/2.
T(2*n, n+1) = (1-(-1)^n)*A262394(n/2)/2.
T(2*n, n-1) = (1+(-1)^n)*A236194(n/2)/2
T(3*n-2, n) = A000108(n), n >= 1. (End)

A132373 Expansion of c(6*x^2)/(1-x*c(6*x^2)), where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 1, 7, 13, 91, 205, 1435, 3565, 24955, 65821, 460747, 1265677, 8859739, 25066621, 175466347, 507709165, 3553964155, 10466643805, 73266506635, 218878998733, 1532152991131, 4631531585341, 32420721097387, 98980721277613, 692865048943291, 2133274258946845
Offset: 0

Views

Author

Philippe Deléham, Nov 10 2007

Keywords

Comments

Hankel transform is 6^C(n+1, 2).
Series reversion of (1+x)/(1 + 2*x + 7*x^2). [Corrected by R. J. Mathar, Nov 19 2009]

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-24*x^2))/(12*x^2-x*(1-Sqrt(1-24*x^2))) )); // G. C. Greubel, Nov 07 2022
    
  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-24*x^2])/(12*x^2 -x*(1-Sqrt[1-24*x^2])), {x, 0, 40}], x] (* G. C. Greubel, Nov 07 2022 *)
  • SageMath
    def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1)
    def A132373(n): return sum(6^(n-k)*A120730(n,k) for k in range(n+1))
    [A132373(n) for n in range(51)] # G. C. Greubel, Nov 07 2022

Formula

a(n) = Sum_{k=0..n} A120730(n,k) * 6^(n-k).
From G. C. Greubel, Nov 07 2022: (Start)
G.f.: (1 - sqrt(1-24*x^2))/(12*x^2 - x*(1 - sqrt(1-24*x^2))).
a(n) = ( 7*(n+1)*a(n-1) + 24*(n-2)*a(n-2) - 168*(n-2)*a(n-3) )/(n+1). (End)

Extensions

Terms beyond a(7) added by R. J. Mathar, Nov 19 2009

A132375 Expansion of c(8*x^2)/(1 - x*c(8*x^2)), where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 1, 9, 17, 153, 353, 3177, 8113, 73017, 198401, 1785609, 5060433, 45543897, 133071009, 1197639081, 3581326065, 32231934585, 98156060225, 883404542025, 2730108129937, 24570973169433, 76862217117665, 691759954058985
Offset: 0

Views

Author

Philippe Deléham, Nov 10 2007

Keywords

Comments

Hankel transform is 8^C(n+1, 2).
Series reversion of x*(1+x)/(1+2*x+9*x^2).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-32*x^2))/(16*x^2 -x*(1-Sqrt(1-32*x^2))) )); // G. C. Greubel, Nov 08 2022
    
  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-32*x^2])/(16*x^2-x*(1-Sqrt[1-32*x^2])), {x,0, 40}], x] (* G. C. Greubel, Nov 08 2022 *)
  • SageMath
    def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1)
    def A132375(n): return sum(8^(n-k)*A120730(n,k) for k in range(n+1))
    [A132375(n) for n in range(51)] # G. C. Greubel, Nov 08 2022

Formula

a(n) = Sum_{k=0..n} A120730(n,k) * 8^(n-k).
From G. C. Greubel, Nov 08 2022: (Start)
a(n) = (9*(n+1)*a(n-1) + 32*(n-2)*a(n-2) - 288*(n-2)*a(n-3))/(n+1).
G.f.: (1 - sqrt(1-32*x^2))/(16*x^2 - x*(1 - sqrt(1-32*x^2))). (End)

A156566 a(2n+2) = 9*a(2n+1), a(2n+1) = 9*a(2n) - 8^n*A000108(n), a(0)=1.

Original entry on oeis.org

1, 8, 72, 640, 5760, 51712, 465408, 4186112, 37675008, 339017728, 3051159552, 27459059712, 247131537408, 2224149233664, 20017343102976, 180155188248576, 1621396694237184, 14592546256715776, 131332916310441984
Offset: 0

Views

Author

Philippe Deléham, Feb 10 2009

Keywords

Comments

Hankel transform is 8^C(n+1,2).

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 8; a[2] = 72; a[n_] := a[n] = (-288*(n-2)*a[n-3] + 32*(n-2)*a[n-2] + 9*(n+1)*a[n-1])/(n+1); Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Nov 15 2016 *)
    a[n_]:= a[n]= If[n==0, 1, If[OddQ[n], 9*a[n-1] - 8^((n-1)/2)*CatalanNumber[(n- 1)/2], 9*a[n-1]]]; Table[a[n], {n,0,30}] (* G. C. Greubel, May 18 2022 *)
  • SageMath
    def a(n): # a = A156566
        if (n==0): return 1
        elif (n%2==1): return 9*a(n-1) - 8^((n-1)/2)*catalan_number((n-1)/2)
        else: return 9*a(n-1)
    [a(n) for n in (0..30)] # G. C. Greubel, May 18 2022

Formula

a(n) = Sum_{k=0..n} A120730(n,k)*8^k.

A156577 a(2*n+2) = 10*a(2*n+1), a(2*n+1) = 10*a(2*n) - 9^n*A000108(n), a(0) = 1.

Original entry on oeis.org

1, 9, 90, 891, 8910, 88938, 889380, 8890155, 88901550, 888923646, 8889236460, 88889884542, 888898845420, 8888918303988, 88889183039880, 888889778505099, 8888897785050990, 88888916293698870, 888889162936988700
Offset: 0

Views

Author

Philippe Deléham, Feb 10 2009

Keywords

Comments

Hankel transform is 9^binomial(n+1,2).

Crossrefs

Programs

  • Mathematica
    a[n_]:= a[n]= If[n==0, 1, If[OddQ[n], 10*a[n-1] -9^((n-1)/2)*CatalanNumber[(n-1)/2], 10*a[n-1] ]];
    Table[a[n], {n, 0, 30}] (* G. C. Greubel, Jan 04 2022 *)
  • Sage
    def a(n): # a = A156577
        if (n==0): return 1
        elif (n%2==1): return 10*a(n-1) - 9^((n-1)/2)*catalan_number((n-1)/2)
        else: return 10*a(n-1)
    [a(n) for n in (0..30)] # G. C. Greubel, Jan 04 2022

Formula

a(n) = Sum_{k=0..n} A120730(n,k) * 9^k.

A357654 Number of lattice paths from (0,0) to (i,n-2*i) that do not go above the diagonal x=y using steps in {(1,0), (0,1)}.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 3, 3, 6, 9, 10, 19, 29, 34, 63, 97, 118, 215, 333, 416, 749, 1165, 1485, 2650, 4135, 5355, 9490, 14845, 19473, 34318, 53791, 71313, 125104, 196417, 262735, 459152, 721887, 973027, 1694914, 2667941, 3619955, 6287896, 9907851, 13521307, 23429158
Offset: 0

Views

Author

Alois P. Heinz, Oct 07 2022

Keywords

Crossrefs

Programs

  • Magma
    A120730:= func< n, k | n gt 2*k select 0 else Binomial(n, k)*(2*k-n+1)/(k+1) >;
    A357654:= func< n | (&+[A120730(n-k, k): k in [0..Floor(n/2)]]) >;
    [A357654(n): n in [0..50]]; // G. C. Greubel, Nov 07 2022
    
  • Maple
    b:= proc(x, y) option remember; `if`(min(x, y)<0 or y>x, 0,
          `if`(max(x, y)=0, 1, b(x-1, y)+b(x, y-1)))
        end:
    a:= n-> add(b(i, n-2*i), i=ceil(n/3)..floor(n/2)):
    seq(a(n), n=0..44);
  • Mathematica
    A120730[n_, k_]:= If[n>2*k, 0, Binomial[n,k]*(2*k-n+1)/(k+1)];
    A357654[n_]:= Sum[A120730[n-k,k], {k,0,Floor[n/2]}];
    Table[A357654[n], {n,0,50}] (* G. C. Greubel, Nov 07 2022 *)
  • SageMath
    def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1)
    def A357654(n): return sum(A120730(n-k,k) for k in range((n//2)+1))
    [A357654(n) for n in range(51)] # G. C. Greubel, Nov 07 2022

Formula

a(n) = Sum_{k=0..floor(n/2)} A120730(n-k, k). - G. C. Greubel, Nov 07 2022

A357825 Total number of n-tuples of semi-Dyck paths from (0,0) to (n,n-2*j) for j = 0..floor(n/2).

Original entry on oeis.org

1, 1, 2, 9, 98, 4150, 562692, 211106945, 404883552194, 1766902576146876, 40519034229909243476, 2708397617879598970178238, 658332084097982587522119612196, 735037057881394837614680080889845116, 2030001034486747324990010196845670569155080
Offset: 0

Views

Author

Alois P. Heinz, Oct 14 2022

Keywords

Crossrefs

Main diagonal of A357824.

Programs

  • Maple
    b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1])))
        end:
    a:= n-> add(b(n, n-2*j)^n, j=0..n/2):
    seq(a(n), n=0..15);
  • Mathematica
    Table[Sum[(Binomial[n, k]*(n - 2*k + 1)/(n - k + 1))^n, {k, 0, n/2}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 17 2022 *)

Formula

a(n) = A357824(n,n).
a(n) = Sum_{j=0..floor(n/2)} A008315(n,j)^n.
a(n) = Sum_{j=0..n} A120730(n,j)^n.
a(n) mod 2 = 1 <=> n in { A000225 }.
From Vaclav Kotesovec, Nov 17 2022: (Start)
a(n)^(1/n) ~ exp(-1/2) * 2^(n + 3/2) / (sqrt(Pi)*n).
Limit_{n->oo} a(n) / (2^(n^2 + 3*n/2) / (n^n * exp(n/2) * Pi^(n/2))) does not exist, see also graph. (End)
Conjecture: the superconguence a(2*p-1) == 1 (mod p^3) holds for all primes p >= 5 (checked up to p = 101). - Peter Bala, Mar 20 2023
Previous Showing 21-30 of 31 results. Next