cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A120758 The (1,3)-entry in the matrix M^n, where M is the 3 X 3 matrix [0,2,1; 2,1,2; 1,2,2] (n>=1).

Original entry on oeis.org

1, 6, 25, 116, 517, 2338, 10517, 47400, 213481, 961726, 4332145, 19515036, 87908397, 395998298, 1783838637, 8035595600, 36197658961, 163058307446, 734522939465, 3308779311556, 14904940203477, 67141752851858, 302451060668357, 1362440511764600, 6137337207120441
Offset: 1

Views

Author

Gary W. Adamson and Roger L. Bagula, Jul 01 2006

Keywords

Comments

a(n)/a(n-1) tends to 4.50466435...an eigenvalue of M and a root to the characteristic polynomial x^3 - 3x^2 - 7x + 1.

Examples

			a(7)=10517 because M^7= [6682,9842,10517;9842,14401,15438;10517,15438,16524].
		

Crossrefs

Cf. A120757.

Programs

  • Maple
    with(linalg): M[1]:=matrix(3,3,[0,2,1,2,1,2,1,2,2]): for n from 2 to 25 do M[n]:=multiply(M[1],M[n-1]) od: seq(M[n][3,1],n=1..25);

Formula

a(n) = 3*a(n-1)+7*a(n-2)-a(n-3) (follows from the minimal polynomial of the matrix M).
G.f. x*(1+3*x) / ( 1-3*x-7*x^2+x^3 ). - R. J. Mathar, Mar 03 2013

Extensions

Corrected by T. D. Noe, Nov 07 2006
Edited by N. J. A. Sloane, Dec 04 2006

A215139 a(n) = (a(n-1) - a(n-3))*7^((1+(-1)^n)/2) with a(6)=5, a(7)=4, a(8)=22.

Original entry on oeis.org

5, 4, 22, 17, 91, 69, 364, 273, 1428, 1064, 5537, 4109, 21315, 15778, 81683, 60368, 312130, 230447, 1190553, 878423, 4535832, 3345279, 17267992, 12732160, 65708167, 48440175, 249956105, 184247938, 950654341, 700698236, 3615152086, 2664497745, 13746596563, 10131444477
Offset: 6

Views

Author

Roman Witula, Aug 04 2012

Keywords

Comments

The Ramanujan-type sequence the number 9 for the argument 2*Pi/7. The sequence is connecting with the following decomposition: (s(4)/s(1))^(1/3)*s(1)^n + (s(1)/s(2))^(1/3)*s(2)^n + (s(2)/s(4))^(1/3)*s(4)^n = x(n)*(4-3*7^(1/3))^(1/3) + y(n)*(11-3*49^(1/3))^(1/3), where s(j) := sin(2*Pi*j/7), x(0)=1, x(1)=-7^(1/6)/2, x(2)=y(0)=y(1)=0, y(2)=7^(1/3)/4 and X(n)=sqrt(7)*(X(n-1)-X(n-3)) for every n=3,4,..., and X=x or X=y. It could be deduced the formula 4*y(n) = a(n)*7^(1/3 + (3+(-1)^n)/4), which implies a(0)=0, a(1)= 0, a(2)= 1/7, a(3)=1/7, a(4)=1, a(5)=6/7, i.e., A163260(n)=7*a(n) for every n=0,1,...,5. The sequence a(n) is discussed in third Witula paper.

Examples

			From values of x(2),y(2) and the identity 2*sin(t)^2=1-cos(2*t) we obtain (s(4)/s(1))^(1/3)*c(1) + (s(1)/s(2))^(1/3)*c(4) + (s(2)/s(4))^(1/3)*c(1) = (4-3*7^(1/3))^(1/3) - (1/2)*(7*(11-3*49^(1/3)))^(1/3), where c(j):=cos(2*Pi*j/7). Further, from values of x(1),x(3),y(1),y(3) and the identity 4*sin(t)^3=3*sin(t)-sin(3*t) we obtain (s(4)/s(1))^(1/3)*s(4) + (s(1)/s(2))^(1/3)*s(1) + (s(2)/s(4))^(1/3)*s(2) = (-3*7^(1/6)/2 +4*7^(1/2))*(4-3*7^(1/3))^(1/3) - 7^(5/6)*(11-3*49^(1/3))^(1/3).
		

References

  • R. Witula, E. Hetmaniok and D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012.

Crossrefs

Programs

  • Magma
    I:=[5,4,22,17,91,69]; [n le 6 select I[n] else 7*Self(n-2) - 14*Self(n-4) + 7*Self(n-6): n in [1..30]]; // G. C. Greubel, Apr 19 2018
  • Mathematica
    LinearRecurrence[{0,7,0,-14,0,7}, {5,4,22,17,91,69}, {1,50}] (* G. C. Greubel, Apr 19 2018 *)
  • PARI
    Vec(-x*(1+x)*(6*x^4+x^3-12*x^2-x+5)/(-1+7*x^2-14*x^4+7*x^6) + O(x^50)) \\ Michel Marcus, Apr 20 2016
    

Formula

G.f.: -x*(1+x)*(6*x^4+x^3-12*x^2-x+5) / ( -1+7*x^2-14*x^4+7*x^6 ). - R. J. Mathar, Sep 14 2012

Extensions

More terms from Michel Marcus, Apr 20 2016

A120775 a(n) = 3*a(n-1) + 5*a(n-2) + a(n-3).

Original entry on oeis.org

1, 6, 23, 100, 421, 1786, 7563, 32040, 135721, 574926, 2435423, 10316620, 43701901, 185124226, 784198803, 3321919440, 14071876561, 59609425686, 252509579303, 1069647742900, 4531100550901, 19194049946506, 81307300336923, 344423251294200, 1459000305513721
Offset: 1

Views

Author

Gary W. Adamson and Roger L. Bagula, Jul 04 2006

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,5,1},{1,6,23},25] (* James C. McMahon, Oct 09 2024 *)

Formula

a(n) = 3*a(n-1) + 5*a(n-2) + a(n-3).
G.f.: -x*(1+3*x) / ( (1+x)*(x^2+4*x-1) ). a(n) + a(n+1) = A048876(n). - R. J. Mathar, Oct 22 2013
a(n) = (Lucas(3n-1) + (-1)^n)/2. - Greg Dresden, Oct 09 2020

Extensions

Edited by N. J. A. Sloane, Dec 03 2006
a(24)-a(25) from James C. McMahon, Oct 09 2024
Previous Showing 11-13 of 13 results.