cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A121419 Column 2 of triangle A121416.

Original entry on oeis.org

1, 2, 11, 101, 1305, 21745, 443329, 10679494, 296547736, 9319259500, 326788327650, 12643827604842, 534889691765631, 24555735428777265, 1215611513578215355, 64542477563559758310, 3658333757447085090365
Offset: 0

Views

Author

Paul D. Hanna, Aug 22 2006

Keywords

Comments

A121416 is the matrix square of triangle A121412; row n of triangle T=A121412 equals row (n-1) of T^(n+1) with an appended '1'.

Crossrefs

Cf. A121416 (triangle); other columns: A121417, A121418.

Programs

  • PARI
    {a(n)=local(A=Mat(1), B); for(m=1, n+3, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i,j]=1, B[i, j]=(A^i)[i-1, j]); )); A=B); return((A^2)[n+3, 3])}

A121423 Column 2 of triangle A121420.

Original entry on oeis.org

1, 3, 18, 169, 2190, 36360, 737051, 17645187, 487025244, 15219471545, 530951735025, 20447695079658, 861389893507518, 39394187817328680, 1943446826192453505, 102863050524539640435, 5813722327999905078450
Offset: 0

Views

Author

Paul D. Hanna, Aug 23 2006

Keywords

Comments

A121420 is the matrix cube of triangle A121412; row n of triangle T=A121412 equals row (n-1) of T^(n+1) with an appended '1'.

Crossrefs

Cf. A121420 (triangle); other columns: A121421, A121422.

Programs

  • PARI
    {a(n)=local(A=Mat(1), B); for(m=1, n+3, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i,j]=1, B[i, j]=(A^i)[i-1, j]); )); A=B); return((A^3)[n+3, 3])}

A121432 Number of subpartitions of partition P=[0,0,0,1,1,1,1,2,2,2,2,2,3,...], where P(n) = [(sqrt(8*n+25) - 5)/2].

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 5, 11, 18, 26, 35, 45, 101, 169, 250, 345, 455, 581, 1305, 2190, 3255, 4520, 6006, 7735, 9730, 21745, 36360, 53916, 74781, 99351, 128051, 161336, 199692, 443329, 737051, 1087583, 1502270, 1989113, 2556806, 3214774, 3973212, 4843125
Offset: 0

Views

Author

Paul D. Hanna, Jul 30 2006

Keywords

Comments

See A115728 for the definition of subpartitions of a partition.

Examples

			The g.f. may be illustrated by:
1/(1-x) = (1 + x + x^2)*(1-x)^0 + (x^3 + 2*x^4 + 3*x^5 + 4*x^6)*(1-x)^1 +
(5*x^7 + 11*x^8 + 18*x^9 + 26*x^10 + 35*x^11)*(1-x)^2 +
(45*x^12 + 101*x^13 + 169*x^14 + 250*x^15 + 345*x^16 + 455*x^17)*(1-x)^3 +
(581*x^18 + 1305*x^19 + 2190*x^20 + 3255*x^21 + 4520*x^22 + 6006*x^23 + 7735*x^24)*(1-x)^4 +...
When the sequence is put in the form of a triangle:
1, 1, 1,
1, 2, 3, 4,
5, 11, 18, 26, 35,
45, 101, 169, 250, 345, 455,
581, 1305, 2190, 3255, 4520, 6006, 7735,
9730, 21745, 36360, 53916, 74781, 99351, 128051, 161336, ...
then the columns of this triangle form column 2 (with offset)
of successive matrix powers of triangle H=A121412.
This sequence is embedded in table A121428 as follows.
Column 2 of successive powers of matrix H begin:
H^1: [1,1,5,45,581,9730,199692,4843125,135345925,...];
H^2: [1,2,11,101,1305,21745,443329,10679494,296547736,...];
H^3: [1,3,18,169,2190,36360,737051,17645187,487025244,...];
H^4: 1, [4,26,250,3255,53916,1087583,25889969,710546530,...];
H^5: 1,5, [35,345,4520,74781,1502270,35578270,971255050,...];
H^6: 1,6,45, [455,6006,99351,1989113,46890210,1273698270,...];
H^7: 1,7,56,581, [7735,128051,2556806,60022670,1622857887,...];
H^8: 1,8,68,724,9730, [161336,3214774,75190410,2024181693,...];
H^9: 1,9,81,885,12015,199692, [3973212,92627235,2483617140,...];
the terms enclosed in brackets form this sequence.
		

Crossrefs

Cf. A121412 (triangle H), A121416 (H^2), A121420 (H^3); A121428, A121429; column 1 of H^n: A121414, A121418, A121422; variants: A121430, A121431, A121433.

Programs

  • PARI
    {a(n)=local(A); if(n==0,1,A=x+x*O(x^n); for(k=0, n, A+=polcoeff(A, k)*x^k*(1-(1-x)^( (sqrtint(8*k+25)+1)\2 - 2 ) )); polcoeff(A, n))}

Formula

G.f.: 1/(1-x) = Sum_{n>=0} a(n)*x^n*(1-x)^P(n), where P(n)=[(sqrt(8*n+25)-5)/2].

A121438 Matrix inverse of triangle A122178, where A122178(n,k) = C( n*(n+1)/2 + n-k - 1, n-k) for n>=k>=0.

Original entry on oeis.org

1, -1, 1, -3, -3, 1, -17, -3, -6, 1, -160, -25, 5, -10, 1, -2088, -285, -35, 30, -15, 1, -34307, -4179, -420, -91, 84, -21, 1, -675091, -74823, -6916, -497, -322, 182, -28, 1, -15428619, -1577763, -135639, -10080, -63, -1002, 342, -36, 1, -400928675, -38209725, -3082905, -215700, -14139, 2655, -2625
Offset: 0

Views

Author

Paul D. Hanna, Aug 29 2006

Keywords

Comments

A triangle having similar properties and complementary construction is the dual triangle A121434.

Examples

			Triangle, A122178^-1, begins:
1;
-1, 1;
-3, -3, 1;
-17, -3, -6, 1;
-160, -25, 5, -10, 1;
-2088, -285, -35, 30, -15, 1;
-34307, -4179, -420, -91, 84, -21, 1;
-675091, -74823, -6916, -497, -322, 182, -28, 1;
-15428619, -1577763, -135639, -10080, -63, -1002, 342, -36, 1; ...
Triangle A121412 begins:
1;
1, 1;
3, 1, 1;
18, 4, 1, 1;
170, 30, 5, 1, 1; ...
Row 3 of A122178^-1 equals row 3 of A121412^(-6), which begins:
1;
-6, 1;
3, -6, 1;
-17, -3, -6, 1; ...
Row 4 of A122178^-1 equals row 4 of A121412^(-10), which begins:
1;
-10, 1;
25, -10, 1;
-15, 15, -10, 1;
-160, -25, 5, -10, 1; ...
		

Crossrefs

Cf. A122178 (matrix inverse); A121412; variants: A121439, A121440, A121441; A121434 (dual).

Programs

  • PARI
    /* Matrix Inverse of A122178 */ {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial(r*(r-1)/2+r-c-1,r-c)))); return((M^-1)[n+1,k+1])}

Formula

T(n,k) = [A121412^(-n*(n+1)/2)](n,k) for n>=k>=0; i.e., row n of A122178^-1 equals row n of matrix power A121412^(-n*(n+1)/2).

A121439 Matrix inverse of triangle A121334, where A121334(n,k) = C( n*(n+1)/2 + n-k, n-k) for n>=k>=0.

Original entry on oeis.org

1, -2, 1, -2, -4, 1, -14, 0, -7, 1, -143, -22, 11, -11, 1, -1928, -260, -40, 40, -16, 1, -32219, -3894, -385, -121, 99, -22, 1, -640784, -70644, -6496, -406, -406, 203, -29, 1, -14753528, -1502940, -128723, -9583, 259, -1184, 370, -37, 1, -385500056, -36631962, -2947266, -205620, -14076, 3657, -2967, 621
Offset: 0

Views

Author

Paul D. Hanna, Aug 29 2006

Keywords

Comments

A triangle having similar properties and complementary construction is the dual triangle A121435.

Examples

			Triangle, A121334^-1, begins:
1;
-2, 1;
-2, -4, 1;
-14, 0, -7, 1;
-143, -22, 11, -11, 1;
-1928, -260, -40, 40, -16, 1;
-32219, -3894, -385, -121, 99, -22, 1;
-640784, -70644, -6496, -406, -406, 203, -29, 1;
-14753528, -1502940, -128723, -9583, 259, -1184, 370, -37, 1; ...
Triangle A121412 begins:
1;
1, 1;
3, 1, 1;
18, 4, 1, 1;
170, 30, 5, 1, 1; ...
Row 3 of A121334^-1 equals row 3 of A121412^(-7), which begins:
1;
-7, 1;
7, -7, 1;
-14, 0, -7, 1; ...
Row 4 of A121334^-1 equals row 4 of A121412^(-11), which begins:
1;
-11, 1;
33, -11, 1;
-22, 22, -11, 1;
-143, -22, 11, -11, 1;...
		

Crossrefs

Cf. A121334 (matrix inverse); A121412; variants: A121438, A121440, A121441; A121435 (dual).

Programs

  • PARI
    /* Matrix Inverse of A121334 */ {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial(r*(r-1)/2+r-c,r-c)))); return((M^-1)[n+1,k+1])}

Formula

T(n,k) = [A121412^(-n*(n+1)/2 - 1)](n,k) for n>=k>=0; i.e., row n of A121334^-1 equals row n of matrix power A121412^(-n*(n+1)/2 - 1).

A121440 Matrix inverse of triangle A121335, where A121335(n,k) = C( n*(n+1)/2 + n-k + 1, n-k) for n>=k>=0.

Original entry on oeis.org

1, -3, 1, 0, -5, 1, -12, 4, -8, 1, -129, -22, 18, -12, 1, -1785, -238, -51, 51, -17, 1, -30291, -3634, -345, -161, 115, -23, 1, -608565, -66750, -6111, -285, -505, 225, -30, 1, -14112744, -1432296, -122227, -9177, 665, -1387, 399, -38, 1, -370746528, -35129022, -2818543, -196037, -14335, 4841, -3337, 658
Offset: 0

Views

Author

Paul D. Hanna, Aug 29 2006

Keywords

Comments

A triangle having similar properties and complementary construction is the dual triangle A121436.

Examples

			Triangle, A121335^-1, begins:
1;
-3, 1;
0, -5, 1;
-12, 4, -8, 1;
-129, -22, 18, -12, 1;
-1785, -238, -51, 51, -17, 1;
-30291, -3634, -345, -161, 115, -23, 1;
-608565, -66750, -6111, -285, -505, 225, -30, 1;
-14112744, -1432296, -122227, -9177, 665, -1387, 399, -38, 1; ...
Triangle A121412 begins:
1;
1, 1;
3, 1, 1;
18, 4, 1, 1;
170, 30, 5, 1, 1; ...
Row 3 of A121335^-1 equals row 3 of A121412^(-8), which begins:
1;
-8, 1;
12, -8, 1;
-12, 4, -8, 1; ...
Row 4 of A121335^-1 equals row 4 of A121412^(-12), which begins:
1;
-12, 1;
42, -12, 1;
-34, 30, -12, 1;
-129, -22, 18, -12, 1; ...
		

Crossrefs

Cf. A121335 (matrix inverse); A121412; variants: A121438, A121439, A121441; A121436 (dual).

Programs

  • PARI
    /* Matrix Inverse of A121335 */ {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial(r*(r-1)/2+r-c+1,r-c)))); return((M^-1)[n+1,k+1])}

Formula

T(n,k) = [A121412^(-n*(n+1)/2 - 2)](n,k) for n>=k>=0; i.e., row n of A121335^-1 equals row n of matrix power A121412^(-n*(n+1)/2 - 2).

A121441 Matrix inverse of triangle A121336, where A121336(n,k) = C( n*(n+1)/2 + n-k + 2, n-k) for n>=k>=0.

Original entry on oeis.org

1, -4, 1, 3, -6, 1, -12, 9, -9, 1, -117, -26, 26, -13, 1, -1656, -216, -69, 63, -18, 1, -28506, -3396, -294, -212, 132, -24, 1, -578274, -63116, -5766, -124, -620, 248, -31, 1, -13504179, -1365546, -116116, -8892, 1170, -1612, 429, -39, 1, -356633784, -33696726, -2696316, -186860, -15000, 6228, -3736
Offset: 0

Views

Author

Paul D. Hanna, Aug 29 2006

Keywords

Comments

A triangle having similar properties and complementary construction is the dual triangle A121437.

Examples

			Triangle, A121336^-1, begins:
1;
-4, 1;
3, -6, 1;
-12, 9, -9, 1;
-117, -26, 26, -13, 1;
-1656, -216, -69, 63, -18, 1;
-28506, -3396, -294, -212, 132, -24, 1;
-578274, -63116, -5766, -124, -620, 248, -31, 1;
-13504179, -1365546, -116116, -8892, 1170, -1612, 429, -39, 1; ...
Triangle A121412 begins:
1;
1, 1;
3, 1, 1;
18, 4, 1, 1;
170, 30, 5, 1, 1; ...
Row 3 of A121336^-1 equals row 3 of A121412^(-9), which begins:
1;
-9, 1;
18, -9, 1;
-12, 9, -9, 1; ...
Row 4 of A121336^-1 equals row 4 of A121412^(-13), which begins:
1;
-13, 1;
52, -13, 1;
-52, 39, -13, 1;
-117, -26, 26, -13, 1; ...
		

Crossrefs

Cf. A121336 (matrix inverse); A121412; variants: A121438, A121439, A121440; A121437 (dual).

Programs

  • PARI
    /* Matrix Inverse of A121336 */ {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial(r*(r-1)/2+r-c+2,r-c)))); return((M^-1)[n+1,k+1])}

Formula

T(n,k) = [A121412^(-n*(n+1)/2 - 3)](n,k) for n>=k>=0; i.e., row n of A121336^-1 equals row n of matrix power A121412^(-n*(n+1)/2 - 3).

A121433 Number of subpartitions of partition P=[0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,...], where P(n) = [(sqrt(8*n+49) - 7)/2].

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 13, 21, 30, 40, 51, 63, 139, 229, 334, 455, 593, 749, 924, 2043, 3378, 4951, 6785, 8904, 11333, 14098, 17226, 37971, 62655, 91728, 125671, 164997, 210252, 262016, 320904, 387567, 850260, 1397268, 2038545, 2784850, 3647788
Offset: 0

Views

Author

Paul D. Hanna, Jul 30 2006

Keywords

Comments

See A115728 for the definition of subpartitions of a partition.

Examples

			The g.f. may be illustrated by:
1/(1-x) = (1 + x + x^2 + x^3)*(1-x)^0 +
(x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 5*x^8)*(1-x)^1 +
(6*x^9 + 13*x^10 + 21*x^11 + 30*x^12 + 40*x^13 + 51*x^14)*(1-x)^2 +
(63*x^15 + 139*x^16 + 229*x^17 + 334*x^18 + 455*x^19 + 593*x^20 + 749*x^21)*(1-x)^3 +
When the sequence is put in the form of a triangle:
1, 1, 1, 1,
1, 2, 3, 4, 5,
6, 13, 21, 30, 40, 51,
63, 139, 229, 334, 455, 593, 749,
924, 2043, 3378, 4951, 6785, 8904, 11333, 14098,
17226, 37971, 62655, 91728, 125671, 164997, 210252, 262016, 320904,
then the columns of this triangle form column 3 (with offset)
of successive matrix powers of triangle H=A121412.
Column 3 of successive powers of matrix H begin:
H^1: [1,1,6,63,924,17226,387567,10182744,305379129,...];
H^2: [1,2,13,139,2043,37971,850260,22224723,663173878,...];
H^3: [1,3,21,229,3378,62655,1397268,36351147,1079567193,...];
H^4: [1,4,30,334,4951,91728,2038545,52807195,1561301733,...];
H^5: 1, [5,40,455,6785,125671,2784850,71859275,2115718545,...];
H^6: 1,6, [51,593,8904,164997,3647788,93796335,2750797677,...];
H^7: 1,7,63, [749,11333,210252,4639852,118931226,3475200792,...];
H^8: 1,8,76,924, [14098,262016,5774466,147602118,4298315847,...];
H^9: 1,9,90,1119,17226, [320904,7066029,180173970,5230303902,...];
the terms enclosed in brackets form this sequence.
		

Crossrefs

Cf. A121412 (triangle H), A121416 (H^2), A121420 (H^3); column 1 of H^n: A121414, A121418, A121422; variants: A121430, A121431, A121432.

Programs

  • PARI
    {a(n)=local(A); if(n==0,1,A=x+x*O(x^n); for(k=0, n, A+=polcoeff(A, k)*x^k*(1-(1-x)^( (sqrtint(8*k+49)+1)\2 - 3 ) )); polcoeff(A, n))}

Formula

G.f.: 1/(1-x) = Sum_{n>=0} a(n)*x^n*(1-x)^P(n), where P(n)=[(sqrt(8*n+49)-7)/2].

A121429 Main diagonal of rectangular table A121428.

Original entry on oeis.org

1, 2, 18, 250, 4520, 99351, 2556806, 75190410, 2483617140, 90955908010, 3655774038653, 159938142409890, 7564604603286913, 384576889110665055, 20912407157570989950, 1211142337261176799610, 74427504634177621877538
Offset: 0

Views

Author

Paul D. Hanna, Aug 26 2006

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(H=Mat(1), B); for(m=1, n+3, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, j]=1, B[i, j]=(H^i)[i-1, j]); )); H=B); return((H^(n+1))[n+3, 3])}

Formula

a(n) = [A121412^(n+1)](n+2,2) for n>=0; i.e., the (n+1)-th term of column 2 in matrix power A121412^(n+1).
Previous Showing 21-29 of 29 results.