A354844
a(n) = n! * Sum_{d|n} (n/d)^d / (d! * (n/d)!).
Original entry on oeis.org
1, 3, 4, 29, 6, 1027, 8, 26889, 272170, 861851, 12, 515592013, 14, 1530809295, 668366899216, 9382044672017, 18, 1405750464518419, 20, 1393382139935385621, 4274473667143680022, 30537988748467223, 24, 211745638285336995840025
Offset: 1
-
a[n_] := n! * DivisorSum[n, (n/#)^#/(#! * (n/#)!) &]; Array[a, 25] (* Amiram Eldar, Jun 08 2022 *)
-
a(n) = n!*sumdiv(n, d, (n/d)^d/(d!*(n/d)!));
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, (exp(k*x^k)-1)/k!)))
A354862
a(n) = n! * Sum_{d|n} (n/d)! / d!.
Original entry on oeis.org
1, 5, 37, 601, 14401, 520801, 25401601, 1626189601, 131682257281, 13168407228481, 1593350922240001, 229442707280223361, 38775788043632640001, 7600054676241325858561, 1710012252750418295078401, 437763137119219420513804801, 126513546505547170185216000001
Offset: 1
-
a[n_] := n! * DivisorSum[n, (n/#)! / #! &]; Array[a, 17] (* Amiram Eldar, Aug 30 2023 *)
-
a(n) = n!*sumdiv(n, d, (n/d)!/d!);
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, k!*(exp(x^k)-1))))
-
from math import factorial
from sympy import divisors
def A354862(n):
f = factorial(n)
return sum(f*(a := factorial(n//d))//(b:= factorial(d)) + (f*b//a if d**2 < n else 0) for d in divisors(n,generator=True) if d**2 <= n) # Chai Wah Wu, Jun 09 2022
A354897
a(n) = n! * Sum_{d|n} d^n / (d! * (n/d)!).
Original entry on oeis.org
1, 5, 28, 353, 3126, 94237, 823544, 72042497, 585825130, 157671732881, 285311670612, 790577855833537, 302875106592254, 5876819345289651137, 55890419425648520176, 73205730667453550166017, 827240261886336764178, 1474631675630757976051079425
Offset: 1
-
a[n_] := n! * DivisorSum[n, #^n/(#! * (n/#)!) &]; Array[a, 18] (* Amiram Eldar, Jun 11 2022 *)
-
a(n) = n!*sumdiv(n, d, d^n/(d!*(n/d)!));
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, (exp((k*x)^k)-1)/k!)))
A354898
a(n) = n! * Sum_{d|n} d^(n - d) / (d! * (n/d)!).
Original entry on oeis.org
1, 2, 2, 26, 2, 2582, 2, 268802, 7348322, 51120722, 2, 299332756802, 2, 7157951760962, 18701679546950402, 613777679843328002, 2, 3250742570192384467202, 2, 29411516073133093829529602, 1146522800008167069616128002, 4017001663590220290585602, 2
Offset: 1
-
f:= proc(n) local d; n! * add(d^(n-d)/(d! * (n/d)!), d = numtheory:-divisors(n)) end proc:
map(f, [$1..30]); # Robert Israel, Jul 10 2023
-
a[n_] := n! * DivisorSum[n, #^(n - #)/(#! * (n/#)!) &]; Array[a, 23] (* Amiram Eldar, Jun 11 2022 *)
-
a(n) = n!*sumdiv(n, d, d^(n-d)/(d!*(n/d)!));
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, (exp((k*x)^k)-1)/(k^k*k!))))
A354899
a(n) = n! * Sum_{d|n} d^d / (d! * (n/d)!).
Original entry on oeis.org
1, 5, 28, 281, 3126, 48517, 823544, 16995617, 387692650, 10047310481, 285311670612, 8932562801857, 302875106592254, 11119129387084097, 437899615088648176, 18451106376806703617, 827240261886336764178, 39349894934527426209025
Offset: 1
-
a[n_] := n! * DivisorSum[n, #^#/(#! * (n/#)!) &]; Array[a, 18] (* Amiram Eldar, Jun 11 2022 *)
-
a(n) = n!*sumdiv(n, d, d^d/(d!*(n/d)!));
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, k^k*(exp(x^k)-1)/k!)))
A386877
Triangle read by rows: T(n, k) = n! / (k! * (n/k)!) if k divides n otherwise 0; T(n, 0) = 0^n.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 6, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 60, 60, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 840, 0, 840, 0, 0, 0, 1, 0, 1, 0, 10080, 0, 0, 0, 0, 0, 1, 0, 1, 15120, 0, 0, 15120, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0
Triangle starts:
[ 0] [1]
[ 1] [0, 1]
[ 2] [0, 1, 1]
[ 3] [0, 1, 0, 1]
[ 4] [0, 1, 6, 0, 1]
[ 5] [0, 1, 0, 0, 0, 1]
[ 6] [0, 1, 60, 60, 0, 0, 1]
[ 7] [0, 1, 0, 0, 0, 0, 0, 1]
[ 8] [0, 1, 840, 0, 840, 0, 0, 0, 1]
[ 9] [0, 1, 0, 10080, 0, 0, 0, 0, 0, 1]
[10] [0, 1, 15120, 0, 0, 15120, 0, 0, 0, 0, 1]
[11] [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
-
A386877[n_, k_] := Which[k == 0, Boole[n == 0], Divisible[n, k], n!/(k!*(n/k)!), True, 0];
Table[A386877[n, k], {n, 0, 12}, {k, 0, n}] (* Paolo Xausa, Aug 09 2025 *)
-
F = factorial
def T(n, k):
if k == 0: return 0**n
return F(n)/(F(k)*F(n//k)) if k.divides(n) else 0
for n in range(33): print([T(n,k) for k in srange(n+1)])
A356004
a(n) = n! * Sum_{k=1..n} Sum_{d|k} 1/(d! * (k/d)!).
Original entry on oeis.org
1, 4, 14, 64, 322, 2054, 14380, 116722, 1060580, 10636042, 116996464, 1411275650, 18346583452, 256869465610, 3856674412952, 61743633813634, 1049641774831780, 18896533652098442, 359034139389870400, 7182372973523436802, 150833211474559084844
Offset: 1
-
a[n_] := n! * Sum[DivisorSum[k, 1/(#!*(k/#)!) &], {k, 1, n}]; Array[a, 21] (* Amiram Eldar, Jul 22 2022 *)
-
a(n) = n!*sum(k=1, n, sumdiv(k,d,1/(d!*(k/d)!)));
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, (exp(x^k)-1)/k!)/(1-x)))
A363737
a(n) = n! * Sum_{d|n} (-1)^(d+1) / (d! * (n/d)!).
Original entry on oeis.org
1, 0, 2, -6, 2, 0, 2, -1680, 10082, 0, 2, -665280, 2, 0, 3632428802, -36843206400, 2, 0, 2, -670442572800, 3379030566912002, 0, 2, -71812452903064473600, 1077167364120207360002, 0, 10002268381116211200002, -3497296636753920000, 2, 0, 2
Offset: 1
-
a[n_] := n! * DivisorSum[n, (-1)^(#+1)/(#! * (n/#)!) &]; Array[a, 30] (* Amiram Eldar, Jul 03 2023 *)
-
a(n) = n!*sumdiv(n, d, (-1)^(d+1)/(d!*(n/d)!));
A370581
a(n) = n! * Sum_{d|n} d/(d! * (n/d)!).
Original entry on oeis.org
1, 3, 4, 17, 6, 307, 8, 5049, 30250, 105851, 12, 25945933, 14, 77837775, 14529715216, 147891744017, 18, 13435316294419, 20, 7606841430988821, 16895152834560022, 183030822374423, 24, 387276381308571955225, 5385836820601036800026, 485735643993600027
Offset: 1
-
a(n) = n!*sumdiv(n, d, d/(d!*(n/d)!));
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, x^k/k!*exp(x^k))))