cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A354844 a(n) = n! * Sum_{d|n} (n/d)^d / (d! * (n/d)!).

Original entry on oeis.org

1, 3, 4, 29, 6, 1027, 8, 26889, 272170, 861851, 12, 515592013, 14, 1530809295, 668366899216, 9382044672017, 18, 1405750464518419, 20, 1393382139935385621, 4274473667143680022, 30537988748467223, 24, 211745638285336995840025
Offset: 1

Views

Author

Seiichi Manyama, Jun 08 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * DivisorSum[n, (n/#)^#/(#! * (n/#)!) &]; Array[a, 25] (* Amiram Eldar, Jun 08 2022 *)
  • PARI
    a(n) = n!*sumdiv(n, d, (n/d)^d/(d!*(n/d)!));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, (exp(k*x^k)-1)/k!)))

Formula

E.g.f.: Sum_{k>0} (exp(k * x^k) - 1)/k!.
If p is prime, a(p) = 1 + p.

A354862 a(n) = n! * Sum_{d|n} (n/d)! / d!.

Original entry on oeis.org

1, 5, 37, 601, 14401, 520801, 25401601, 1626189601, 131682257281, 13168407228481, 1593350922240001, 229442707280223361, 38775788043632640001, 7600054676241325858561, 1710012252750418295078401, 437763137119219420513804801, 126513546505547170185216000001
Offset: 1

Views

Author

Seiichi Manyama, Jun 09 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * DivisorSum[n, (n/#)! / #! &]; Array[a, 17] (* Amiram Eldar, Aug 30 2023 *)
  • PARI
    a(n) = n!*sumdiv(n, d, (n/d)!/d!);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, k!*(exp(x^k)-1))))
    
  • Python
    from math import factorial
    from sympy import divisors
    def A354862(n):
        f = factorial(n)
        return sum(f*(a := factorial(n//d))//(b:= factorial(d)) + (f*b//a if d**2 < n else 0) for d in divisors(n,generator=True) if d**2 <= n) # Chai Wah Wu, Jun 09 2022

Formula

E.g.f.: Sum_{k>0} k! * (exp(x^k) - 1).
If p is prime, a(p) = 1 + (p!)^2 = A020549(p).

A354897 a(n) = n! * Sum_{d|n} d^n / (d! * (n/d)!).

Original entry on oeis.org

1, 5, 28, 353, 3126, 94237, 823544, 72042497, 585825130, 157671732881, 285311670612, 790577855833537, 302875106592254, 5876819345289651137, 55890419425648520176, 73205730667453550166017, 827240261886336764178, 1474631675630757976051079425
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * DivisorSum[n, #^n/(#! * (n/#)!) &]; Array[a, 18] (* Amiram Eldar, Jun 11 2022 *)
  • PARI
    a(n) = n!*sumdiv(n, d, d^n/(d!*(n/d)!));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, (exp((k*x)^k)-1)/k!)))

Formula

E.g.f.: Sum_{k>0} (exp((k * x)^k) - 1)/k!.
If p is prime, a(p) = 1 + p^p.

A354898 a(n) = n! * Sum_{d|n} d^(n - d) / (d! * (n/d)!).

Original entry on oeis.org

1, 2, 2, 26, 2, 2582, 2, 268802, 7348322, 51120722, 2, 299332756802, 2, 7157951760962, 18701679546950402, 613777679843328002, 2, 3250742570192384467202, 2, 29411516073133093829529602, 1146522800008167069616128002, 4017001663590220290585602, 2
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2022

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local d; n! * add(d^(n-d)/(d! * (n/d)!), d = numtheory:-divisors(n)) end proc:
    map(f, [$1..30]); # Robert Israel, Jul 10 2023
  • Mathematica
    a[n_] := n! * DivisorSum[n, #^(n - #)/(#! * (n/#)!) &]; Array[a, 23] (* Amiram Eldar, Jun 11 2022 *)
  • PARI
    a(n) = n!*sumdiv(n, d, d^(n-d)/(d!*(n/d)!));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, (exp((k*x)^k)-1)/(k^k*k!))))

Formula

E.g.f.: Sum_{k>0} (exp((k * x)^k) - 1)/(k^k * k!).
If p is prime, a(p) = 2.

A354899 a(n) = n! * Sum_{d|n} d^d / (d! * (n/d)!).

Original entry on oeis.org

1, 5, 28, 281, 3126, 48517, 823544, 16995617, 387692650, 10047310481, 285311670612, 8932562801857, 302875106592254, 11119129387084097, 437899615088648176, 18451106376806703617, 827240261886336764178, 39349894934527426209025
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * DivisorSum[n, #^#/(#! * (n/#)!) &]; Array[a, 18] (* Amiram Eldar, Jun 11 2022 *)
  • PARI
    a(n) = n!*sumdiv(n, d, d^d/(d!*(n/d)!));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, k^k*(exp(x^k)-1)/k!)))

Formula

E.g.f.: Sum_{k>0} k^k * (exp(x^k) - 1)/k!.
If p is prime, a(p) = 1 + p^p.

A386877 Triangle read by rows: T(n, k) = n! / (k! * (n/k)!) if k divides n otherwise 0; T(n, 0) = 0^n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 6, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 60, 60, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 840, 0, 840, 0, 0, 0, 1, 0, 1, 0, 10080, 0, 0, 0, 0, 0, 1, 0, 1, 15120, 0, 0, 15120, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Peter Bala and Peter Luschny, Aug 09 2025

Keywords

Examples

			Triangle starts:
  [ 0] [1]
  [ 1] [0, 1]
  [ 2] [0, 1,     1]
  [ 3] [0, 1,     0,     1]
  [ 4] [0, 1,     6,     0,   1]
  [ 5] [0, 1,     0,     0,   0,     1]
  [ 6] [0, 1,    60,    60,   0,     0, 1]
  [ 7] [0, 1,     0,     0,   0,     0, 0, 1]
  [ 8] [0, 1,   840,     0, 840,     0, 0, 0, 1]
  [ 9] [0, 1,     0, 10080,   0,     0, 0, 0, 0, 1]
  [10] [0, 1, 15120,     0,   0, 15120, 0, 0, 0, 0, 1]
  [11] [0, 1,     0,     0,   0,     0, 0, 0, 0, 0, 0, 1]
		

Crossrefs

Cf. A121860 (row sums), A113704 (sign).

Programs

  • Mathematica
    A386877[n_, k_] := Which[k == 0, Boole[n == 0], Divisible[n, k], n!/(k!*(n/k)!), True, 0];
    Table[A386877[n, k], {n, 0, 12}, {k, 0, n}] (* Paolo Xausa, Aug 09 2025 *)
  • SageMath
    F = factorial
    def T(n, k):
        if k == 0: return 0**n
        return F(n)/(F(k)*F(n//k)) if k.divides(n) else 0
    for n in range(33): print([T(n,k) for k in srange(n+1)])

Formula

sign(T(n, k)) = A113704(n, k).

A356004 a(n) = n! * Sum_{k=1..n} Sum_{d|k} 1/(d! * (k/d)!).

Original entry on oeis.org

1, 4, 14, 64, 322, 2054, 14380, 116722, 1060580, 10636042, 116996464, 1411275650, 18346583452, 256869465610, 3856674412952, 61743633813634, 1049641774831780, 18896533652098442, 359034139389870400, 7182372973523436802, 150833211474559084844
Offset: 1

Views

Author

Seiichi Manyama, Jul 22 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * Sum[DivisorSum[k, 1/(#!*(k/#)!) &], {k, 1, n}]; Array[a, 21] (* Amiram Eldar, Jul 22 2022 *)
  • PARI
    a(n) = n!*sum(k=1, n, sumdiv(k,d,1/(d!*(k/d)!)));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, (exp(x^k)-1)/k!)/(1-x)))

Formula

E.g.f.: (1/(1-x)) * Sum_{k>0} (exp(x^k) - 1)/k!.
a(n) = n! * Sum_{k=1..n} A121860(k)/k!.

A363737 a(n) = n! * Sum_{d|n} (-1)^(d+1) / (d! * (n/d)!).

Original entry on oeis.org

1, 0, 2, -6, 2, 0, 2, -1680, 10082, 0, 2, -665280, 2, 0, 3632428802, -36843206400, 2, 0, 2, -670442572800, 3379030566912002, 0, 2, -71812452903064473600, 1077167364120207360002, 0, 10002268381116211200002, -3497296636753920000, 2, 0, 2
Offset: 1

Views

Author

Seiichi Manyama, Jun 18 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * DivisorSum[n, (-1)^(#+1)/(#! * (n/#)!) &]; Array[a, 30] (* Amiram Eldar, Jul 03 2023 *)
  • PARI
    a(n) = n!*sumdiv(n, d, (-1)^(d+1)/(d!*(n/d)!));

Formula

E.g.f.: Sum_{k>0} (1 - exp(-x^k))/k!.
If p is an odd prime, a(p) = 2.

A370581 a(n) = n! * Sum_{d|n} d/(d! * (n/d)!).

Original entry on oeis.org

1, 3, 4, 17, 6, 307, 8, 5049, 30250, 105851, 12, 25945933, 14, 77837775, 14529715216, 147891744017, 18, 13435316294419, 20, 7606841430988821, 16895152834560022, 183030822374423, 24, 387276381308571955225, 5385836820601036800026, 485735643993600027
Offset: 1

Views

Author

Seiichi Manyama, Feb 23 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sumdiv(n, d, d/(d!*(n/d)!));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, x^k/k!*exp(x^k))))

Formula

If p is prime, a(p) = 1 + p.
E.g.f.: Sum_{k>0} x^k/k! * exp(x^k).
Previous Showing 11-19 of 19 results.