cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A066536 Number of ways of writing n as a sum of n+1 squares.

Original entry on oeis.org

1, 4, 12, 32, 90, 312, 1288, 5504, 22608, 88660, 339064, 1297056, 5043376, 19975256, 80027280, 321692928, 1291650786, 5177295432, 20748447108, 83279292960, 335056780464, 1351064867328, 5456890474248, 22063059606912
Offset: 0

Views

Author

Peter Bertok (peter(AT)bertok.com), Jan 07 2002

Keywords

Examples

			There are a(2)=12 solutions (x,y,z) of 2=x^2+y^2+z^2: 3 permutations of (1,1,0), 3 permutations of (-1,-1,0) and 6 permutations of (1, -1,0).
		

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[SquaresR[n+1, n], {n, 24}]]
    (* Calculation of constants {d,c}: *) {1/r, Sqrt[s/(2*Pi*r^2*Derivative[0, 0, 2][EllipticTheta][3, 0, r*s])]} /. FindRoot[{s == EllipticTheta[3, 0, r*s], r*Derivative[0, 0, 1][EllipticTheta][3, 0, r*s] == 1}, {r, 1/4}, {s, 5/2}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Nov 16 2023 *)
  • PARI
    {a(n)=local(THETA3=1+2*sum(k=1,sqrtint(n),x^(k^2))+x*O(x^n));polcoeff(THETA3^(n+1), n)} /* Paul D. Hanna, Oct 26 2009*/

Formula

a(n) equals the coefficient of x^n in the (n+1)-th power of Jacobi theta_3(x) where theta_3(x) = 1 + 2*Sum_{n>=1} x^(n^2). - Paul D. Hanna, Oct 26 2009
a(n) is divisible by n+1: a(n)/(n+1) = A166952(n) for n>=0. - Paul D. Hanna, Oct 26 2009
a(n) ~ c * d^n / sqrt(n), where d = 4.13273137623493996302796465... (= 1/radius of convergence A166952), c = 0.70710538549959357505200... . - Vaclav Kotesovec, Sep 10 2014

Extensions

Edited by Dean Hickerson, Jan 12 2002
a(0) added by Paul D. Hanna, Oct 26 2009
Edited by R. J. Mathar, Oct 29 2009

A288515 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} ((1 + x^j)/(1 - x^j))^k.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 4, 4, 0, 1, 6, 12, 8, 0, 1, 8, 24, 32, 14, 0, 1, 10, 40, 80, 76, 24, 0, 1, 12, 60, 160, 234, 168, 40, 0, 1, 14, 84, 280, 552, 624, 352, 64, 0, 1, 16, 112, 448, 1110, 1712, 1552, 704, 100, 0, 1, 18, 144, 672, 2004, 3912, 4896, 3648, 1356, 154, 0, 1, 20, 180, 960, 3346, 7896, 12600, 13120, 8184, 2532, 232, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 10 2017

Keywords

Examples

			Square array begins:
1,   1,    1,    1,     1,     1,  ...
0,   2,    4,    6,     8,    10,  ...
0,   4,   12,   24,    40,    60,  ...
0,   8,   32,   80,   160,   280,  ...
0,  14,   76,  234,   552,  1110,  ...
0,  24,  168,  624,  1712,  3913,  ...
		

Crossrefs

Columns k=0-24 give: A000007, A015128, A001934, A004404 (alternating values), A284286, A004406-A004425 (alternating values).
Rows n=0-2 give: A000012, A005843, A046092.
Main diagonal gives A270919.
Antidiagonal sums give A299108.

Programs

  • Julia
    # JacobiTheta4 is defined in A002448.
    A288515Column(k, len) = JacobiTheta4(len, -k)
    for k in 0:8 A288515Column(k, 8) |> println end # Peter Luschny, Mar 12 2018
  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[((1 + x^i)/(1 - x^i))^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[1/EllipticTheta[4, 0, x]^k, {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=1} ((1 + x^j)/(1 - x^j))^k.
G.f. of column k: 1/theta_4(x)^k, where theta_4() is the Jacobi theta function.
For asymptotics of column k see comment from Vaclav Kotesovec in A001934.

A319575 a(n) = (2/3)*n*(n^3 - 6*n^2 + 11*n - 3).

Original entry on oeis.org

0, 2, 4, 6, 24, 90, 252, 574, 1136, 2034, 3380, 5302, 7944, 11466, 16044, 21870, 29152, 38114, 48996, 62054, 77560, 95802, 117084, 141726, 170064, 202450, 239252, 280854, 327656, 380074, 438540, 503502, 575424, 654786, 742084, 837830, 942552, 1056794, 1181116
Offset: 0

Views

Author

Peter Luschny, Oct 01 2018

Keywords

Crossrefs

Cf. A000012 (m=0), A005843 (m=1), A046092 (m=2), A130809 (m=3), this sequence (m=4), A319576 (m=5), A319577 (m=6).
Column n=4 of A122141.
Cf. A319574.

Programs

  • Maple
    a := n -> (2/3)*n*(n^3 - 6*n^2 + 11*n - 3):
    seq(a(n), n=0..38);
  • Mathematica
    A319575[n_] := 2/3*n*(n^3-6*n^2+11*n-3); Array[A319575, 50, 0] (* or *)
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 2, 4, 6, 24}, 50] (* Paolo Xausa, Feb 20 2024 *)
  • PARI
    concat(0, Vec(2*x*(1 + x)*(1 - 4*x + 7*x^2) / (1 - x)^5 + O(x^40))) \\ Colin Barker, Oct 02 2018

Formula

a(n) = [x^4] JacobiTheta3(x)^n.
a(n) = A319574(n,4).
From Colin Barker, Oct 02 2018: (Start)
G.f.: 2*x*(1 + x)*(1 - 4*x + 7*x^2) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>4. (End)

A319576 a(n) = (4/15)*n*(n - 1)*(n^3 - 9*n^2 + 26*n - 9).

Original entry on oeis.org

0, 0, 8, 24, 48, 112, 312, 840, 2016, 4320, 8424, 15224, 25872, 41808, 64792, 96936, 140736, 199104, 275400, 373464, 497648, 652848, 844536, 1078792, 1362336, 1702560, 2107560, 2586168, 3147984, 3803408, 4563672, 5440872, 6448000, 7598976, 8908680, 10392984
Offset: 0

Views

Author

Peter Luschny, Oct 01 2018

Keywords

Crossrefs

Cf. A000012 (m=0), A005843 (m=1), A046092 (m=2), A130809 (m=3), A319575 (m=4), this sequence (m=5), A319577 (m=6).
Column n=5 of A122141.
Cf. A319574.

Programs

  • Maple
    a := n -> (4/15)*n*(n - 1)*(n^3 - 9*n^2 + 26*n - 9):
    seq(a(n), n=0..41);
  • Mathematica
    A319576[n_] := 4/15*n*(n-1)*(n^3-9*n^2+26*n-9); Array[A319576, 50, 0] (* or *)
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 0, 8, 24, 48, 112}, 50] (* Paolo Xausa, Feb 20 2024 *)
  • PARI
    concat([0,0], Vec(8*x^2*(1 - 3*x + 3*x^2 + 3*x^3) / (1 - x)^6 + O(x^40))) \\ Colin Barker, Oct 02 2018

Formula

a(n) = [x^5] JacobiTheta3(x)^n.
a(n) = A319574(n,5).
From Colin Barker, Oct 02 2018: (Start)
G.f.: 8*x^2*(1 - 3*x + 3*x^2 + 3*x^3) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
(End)

A319577 a(n) = (4/45)*n*(n - 2)*(n - 1)*(n^3 - 12*n^2 + 47*n - 15).

Original entry on oeis.org

0, 0, 0, 24, 96, 240, 544, 1288, 3136, 7392, 16320, 33528, 64416, 116688, 200928, 331240, 525952, 808384, 1207680, 1759704, 2508000, 3504816, 4812192, 6503112, 8662720, 11389600, 14797120, 19014840, 24189984, 30488976, 38099040, 47229864, 58115328, 71015296
Offset: 0

Views

Author

Peter Luschny, Oct 01 2018

Keywords

Crossrefs

Cf. A000012 (m=0), A005843 (m=1), A046092 (m=2), A130809 (m=3), A319575 (m=4), A319576 (m=5), this sequence (m=6).
Column n=6 of A122141.
Cf. A319574.

Programs

  • Maple
    a := n -> (4/45)*n*(n - 2)*(n - 1)*(n^3 - 12*n^2 + 47*n - 15):
    seq(a(n), n=0..41);
  • Mathematica
    A319577[n_]:=4/45*n*(n-2)*(n-1)*(n^3-12*n^2+47*n-15); Array[A319577, 50, 0] (*or*)
    LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 0, 24, 96, 240, 544}, 50] (* Paolo Xausa, Feb 20 2024 *)
  • PARI
    concat([0,0,0], Vec(8*x^3*(3 - 9*x + 9*x^2 + 5*x^3) / (1 - x)^7 + O(x^40))) \\ Colin Barker, Oct 02 2018

Formula

a(n) = [x^6] JacobiTheta3(x)^n.
a(n) = A319574(n,6).
From Colin Barker, Oct 02 2018: (Start)
G.f.: 8*x^3*(3 - 9*x + 9*x^2 + 5*x^3) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>6.
(End)

A000156 Number of ways of writing n as a sum of 24 squares.

Original entry on oeis.org

1, 48, 1104, 16192, 170064, 1362336, 8662720, 44981376, 195082320, 721175536, 2319457632, 6631997376, 17231109824, 41469483552, 93703589760, 200343312768, 407488018512, 793229226336, 1487286966928, 2697825744960, 4744779429216
Offset: 0

Views

Author

Keywords

Comments

The Carlitz paper has the wrong formula on p. 505, eq. (3). The factor in front of tau(n/2) should be -2^16 (not -2^12). The mistake appeared in the previous equation derived from eq. (2) where theta_3^(24) * 256*k^4*k'^4 was replaced by 2^8*g(q^2) which produces the factor 2^8*256 = 2^16. (One should subtract on p. 504 the second equation in the middle from the negative of the first equation. There is also a sign mistake in the sum term of the third equation from the bottom.) - Wolfdieter Lang, Sep 24 2016

References

  • Avner Ash and Robert Gross, Summing it up, Princeton University Press, 2016, p. 195, eq. (15.1).
  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 107.
  • G. H. Hardy, Ramanujan, 1940, Cambridge, reprinted with additional corrections and comments by AMS Chelsea Publishing, 1999, 2002, Providence, Rhode Island, ch. IX., pp. 153-155.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 314.

Crossrefs

Row d=24 of A122141 and of A319574, 24th column of A286815.

Programs

  • Maple
    (sum(x^(m^2),m=-10..10))^24; seq(coeff(%,x,n), n=0..30);
    # Alternative:
    A000156list := proc(len) series(JacobiTheta3(0, x)^24, x, len+1);
    seq(coeff(%, x, j), j=0..len-1) end: A000156list(21); # Peter Luschny, Oct 02 2018
  • Mathematica
    Table[SquaresR[24, n], {n, 0, 20}] (* Ray Chandler, Nov 28 2006 *)
  • PARI
    first(n)=my(x='x); x+=O(x^(n+1)); Vec((2*sum(k=1,sqrtint(n),x^k^2) + 1)^24) \\ Charles R Greathouse IV, Jul 29 2016

Formula

From Wolfdieter Lang, Sep 24 2016: (Start)
For n >= 1: a(n) = (16*sigma^*{11} - 128*(512*tau(n/2) + (-1)^n*259*tau(n)))/691, with sigma^*{11} = sigma_{11}^{e}(n) - sigma_{11}^{o}(n) if n even and sigma_{11}(n) otherwise. Here sigma_{11}(n) = A013959(n) and 0 if n is not an integer, sigma_{11}^{e}(n) and sigma_{11}^{o}(n) are the sums of the 11th power of the odd and even positive divisors of n, respectively. Ramanujan's tau(n) = A000594(n) and 0 if n is not an integer. This is from Hardy, ch. IX., p. 155, eqs. (9.17.1) and (9.17.2), and p.142 for the definition of sigma^*_{nu}(n). See also the Ash and Gross reference.
Another version, see the corrected Carlitz reference:
a(n) = (2^4*(sigma_{11}(n)- 2*sigma_{11}(n/2) + 2^{12}*sigma_{11}(n/4)) - 2^7*259*(-1)^n*tau(n) - 2^16*tau(n/2))/691, n >= 1.
(End)
a(n) = (48/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017

Extensions

Extended by Ray Chandler, Nov 28 2006

A290430 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of (Sum_{j>=0} x^(j*(j+1)*(2*j+1)/6))^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 1, 0, 0, 1, 4, 3, 0, 0, 0, 1, 5, 6, 1, 0, 1, 0, 1, 6, 10, 4, 0, 2, 0, 0, 1, 7, 15, 10, 1, 3, 2, 0, 0, 1, 8, 21, 20, 5, 4, 6, 0, 0, 0, 1, 9, 28, 35, 15, 6, 12, 3, 0, 0, 0, 1, 10, 36, 56, 35, 12, 20, 12, 0, 0, 0, 0, 1, 11, 45, 84, 70, 28, 31, 30, 4, 0, 1, 0, 0, 1, 12, 55, 120, 126, 64, 49, 60, 20, 0, 3, 0, 0, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 31 2017

Keywords

Comments

A(n,k) is the number of ways of writing n as a sum of k square pyramidal numbers (A000330).

Examples

			Square array begins:
1,  1,  1,  1,  1,   1,  ...
0,  1,  2,  3,  4,   5,  ...
0,  0,  1,  3,  6,  10,  ...
0,  0,  0,  1,  4,  10,  ...
0,  0,  0,  0,  1,   5,  ...
0,  1,  2,  3,  4,   6,  ...
		

Crossrefs

Cf. A000007 (column 0), A253903 (column 1), A282173 (column 6).
Main diagonal gives A303172.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Sum[x^(i (i + 1) (2 i + 1)/6), {i, 0, n}]^k, {x, 0, n}]][j - n], {j, 0, 13}, {n, 0, j}] // Flatten

Formula

G.f. of column k: (Sum_{j>=0} x^(j*(j+1)*(2*j+1)/6))^k.

A297331 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of (theta_3(q^(1/2))^k + theta_4(q^(1/2))^k)/2.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 4, 2, 0, 1, 12, 4, 0, 0, 1, 24, 6, 0, 0, 0, 1, 40, 24, 24, 4, 0, 0, 1, 60, 90, 96, 12, 8, 0, 0, 1, 84, 252, 240, 24, 24, 0, 0, 0, 1, 112, 574, 544, 200, 144, 8, 0, 2, 0, 1, 144, 1136, 1288, 1020, 560, 96, 48, 4, 0, 0, 1, 180, 2034, 3136, 3444, 1560, 400, 192, 6, 4, 0, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 28 2017

Keywords

Examples

			Square array begins:
1,  1,  1,   1,    1,    1,  ...
0,  0,  4,  12,   24,   40,  ...
0,  2,  4,   6,   24,   90,  ...
0,  0,  0,  24,   96,  240,  ...
0,  0,  4,  12,   24,  200,  ...
0,  0,  8,  24,  144,  560,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[(EllipticTheta[3, 0, q^(1/2)]^k + EllipticTheta[4, 0, q^(1/2)]^k)/2, {q, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

G.f. of column k: (theta_3(q^(1/2))^k + theta_4(q^(1/2))^k)/2, where theta_() is the Jacobi theta function.
Previous Showing 21-28 of 28 results.