A224899
E.g.f.: Sum_{n>=0} sinh(n*x)^n.
Original entry on oeis.org
1, 1, 8, 163, 6272, 389581, 35560448, 4479975823, 744707981312, 157897753198201, 41585725184933888, 13318468253704790683, 5097100004294081380352, 2297277197389011910783621, 1204339195916670860817072128, 726625952070893090583192860743
Offset: 0
E.g.f.: A(x) = 1 + x + 8*x^2/2! + 163*x^3/3! + 6272*x^4/4! +...
where
A(x) = 1 + sinh(x) + sinh(2*x)^2 + sinh(3*x)^3 + sinh(4*x)^4 +...
Cf.
A122399,
A249489,
A245322,
A220181,
A221077,
A221078,
A198513,
A220181,
A249459,
A195415,
A245322,
A338040.
-
Flatten[{1,Table[Sum[Sum[Binomial[k,j] * (-1)^j * k^n*(k-2*j)^n / 2^k,{j,0,k}],{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Oct 29 2014 *)
Join[{1},Rest[With[{nn=20},CoefficientList[Series[Sum[Sinh[n*x]^n,{n,nn}],{x,0,nn}],x] Range[0,nn]!]]] (* Harvey P. Dale, May 18 2018 *)
-
{a(n)=n!*polcoeff(sum(k=0, n, sinh(k*x+x*O(x^n))^k), n)}
for(n=0, 20, print1(a(n), ", "))
A229233
O.g.f.: Sum_{n>=0} x^n / Product_{k=1..n} (1 - n*k*x).
Original entry on oeis.org
1, 1, 2, 8, 48, 387, 4043, 52425, 819346, 15133184, 324769270, 7986143453, 222514878501, 6958782341565, 242274294115558, 9324382604206368, 394282071192289024, 18218582054356563951, 915480348188869318723, 49812603754178905560085, 2923492374797360684715882
Offset: 0
O.g.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 48*x^4 + 387*x^5 + 4043*x^6 +...
where
A(x) = 1 + x/(1-x) + x^2/((1-2*1*x)*(1-2*2*x)) + x^3/((1-3*1*x)*(1-3*2*x)*(1-3*3*x)) + x^4/((1-4*1*x)*(1-4*2*x)*(1-4*3*x)*(1-4*4*x)) +...
Exponential Generating Function.
E.g.f.: E(x) = 1 + x + 2*x^2/2! + 8*x^3/3! + 48*x^4/4! + 387*x^5/5! +...
where
E(x) = 1 + (exp(x)-1) + (exp(2*x)-1)^2/(2!*2^2) + (exp(3*x)-1)^3/(3!*3^3) + (exp(4*x)-1)^4/(4!*4^4) + (exp(5*x)-1)^5/(5!*5^5) +...
-
Flatten[{1,Table[Sum[k^(n-k) * StirlingS2[n, k],{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, May 08 2014 *)
-
{a(n)=polcoeff(sum(m=0,n,x^m/prod(k=1,m,1-m*k*x +x*O(x^n))),n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=n!*polcoeff(sum(m=0,n,(exp(m*x+x*O(x^n))-1)^m/(m!*m^m)),n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=sum(k=0, n, k^(n-k) * stirling(n, k, 2))}
for(n=0,30,print1(a(n),", "))
A195005
E.g.f.: Sum_{n>=0} 2^n*(exp(n*x) - 1)^n.
Original entry on oeis.org
1, 2, 34, 1490, 122530, 16227602, 3155309794, 846406200530, 299510392317730, 135163342884412562, 75760096553546176354, 51633670624622762956370, 42049600429338786951232930, 40326932840083815683430101522, 44984263429111569097120217311714
Offset: 0
E.g.f.: A(x) = 1 + 2*x + 34*x^2/2! + 1490*x^3/3! + 122530*x^4/4! +...
where
A(x) = 1 + 2*(exp(x)-1) + 2^2*(exp(2*x)-1)^2 + 2^3*(exp(3*x)-1)^3 +...
-
Flatten[{1, Table[Sum[2^k * k^n * k! * StirlingS2[n,k], {k,0,n}], {n,1,20}]}] (* Vaclav Kotesovec, Oct 04 2020 *)
-
{a(n)=local(X=x+x*O(x^n));n!*polcoeff(sum(m=0,n,2^m*(exp(m*X)-1)^m),n)}
-
{Stirling2(n, k)=if(k<0|k>n, 0, sum(i=0, k, (-1)^i*binomial(k, i)/k!*(k-i)^n))}
{a(n)=sum(k=0, n, 2^k*k^n*k!*Stirling2(n, k))}
A221077
E.g.f.: Sum_{n>=0} tanh(n*x)^n.
Original entry on oeis.org
1, 1, 8, 160, 5888, 345856, 29677568, 3502489600, 544181977088, 107675615297536, 26435436140822528, 7885689342279024640, 2809177794704769548288, 1177952320402008693538816, 574318105367992485583781888, 322156963576521588458420961280, 206009256195720974104252003647488
Offset: 0
E.g.f.: A(x) = 1 + x + 8*x^2/2! + 160*x^3/3! + 5888*x^4/4! + 345856*x^5/5! +...
where
A(x) = 1 + tanh(x) + tanh(2*x)^2 + tanh(3*x)^3 + tanh(4*x)^4 + tanh(5*x)^5 +...
-
nmax = 20; CoefficientList[Series[1 + Sum[Tanh[k*x]^k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, May 31 2022 *)
Join[{1}, Table[Sum[2^n * k^n * Sum[(-1)^j * Binomial[k, j] * Sum[(-1)^m * Binomial[j + m - 1, m] * StirlingS2[n, m] * m! / 2^m, {m, 1, n}], {j, 0, k}], {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, Jun 01 2022 *)
-
{a(n)=local(X=x+x*O(x^n), Egf); Egf=sum(m=0, n, tanh(m*X)^m); n!*polcoeff(Egf, n)}
for(n=0,20,print1(a(n),", ") )
-
{a(n)=local(X=x+x*O(x^n), Egf); Egf=sum(m=0, n, (exp(2*m*X)-1)^m/(exp(2*m*X)+1)^m); n!*polcoeff(Egf, n)}
for(n=0,20,print1(a(n),", ") )
A221078
E.g.f.: Sum_{n>=0} tan(n*x)^n.
Original entry on oeis.org
1, 1, 8, 164, 6400, 404176, 37541888, 4814990144, 815074508800, 176018678814976, 47223034903789568, 15407438848482919424, 6007522256082907955200, 2758698201106509138251776, 1473586749521302260021198848, 905915791153129699969076117504
Offset: 0
E.g.f.: A(x) = 1 + x + 8*x^2/2! + 164*x^3/3! + 6400*x^4/4! + 404176*x^5/5! +...
where
A(x) = 1 + tan(x) + tan(2*x)^2 + tan(3*x)^3 + tan(4*x)^4 + tan(5*x)^5 +...
-
nmax = 20; CoefficientList[Series[1 + Sum[Tan[k*x]^k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, May 31 2022 *)
Join[{1}, Table[Sum[(-1)^((n-k)/2) * 2^n * k^n * Sum[(-1)^j * Binomial[k, j] * Sum[(-1)^m * Binomial[j + m - 1, m] * StirlingS2[n, m] * m! / 2^m, {m, 1, n}], {j, 0, k}], {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, Jun 01 2022 *)
-
{a(n)=local(X=x+x*O(x^n), Egf); Egf=sum(m=0, n, tan(m*X)^m); n!*polcoeff(Egf, n)}
for(n=0,20,print1(a(n),", ") )
A229258
O.g.f.: Sum_{n>=0} n! * x^n / Product_{k=1..n} (1 - n^2*k*x).
Original entry on oeis.org
1, 1, 3, 31, 573, 18031, 854613, 57433951, 5242645173, 625589806831, 95051257799973, 17976303383444671, 4153215615930529173, 1154304694449774708751, 380809177225169291456133, 147420687475847638142996191, 66303807316628093952943203573
Offset: 0
O.g.f.: A(x) = 1 + x + 3*x^2 + 31*x^3 + 573*x^4 + 18031*x^5 + 854613*x^6 +...
where
A(x) = 1 + x/(1-x) + 2!*x^2/((1-2^2*1*x)*(1-2^2*2*x)) + 3!*x^3/((1-3^2*1*x)*(1-3^2*2*x)*(1-3^2*3*x)) + 4!*x^4/((1-4^2*1*x)*(1-4^2*2*x)*(1-4^2*3*x)*(1-4^2*4*x)) +...
Exponential Generating Function.
E.g.f.: E(x) = 1 + x + 3*x^2/2! + 31*x^3/3! + 573*x^4/4! + 18031*x^5/5! +...
where
E(x) = 1 + (exp(x)-1) + (exp(4*x)-1)^2/4^2 + (exp(9*x)-1)^3/9^3 + (exp(16*x)-1)^4/16^4 + (exp(25*x)-1)^5/25^5 +...
-
Flatten[{1,Table[Sum[(k^2)^(n-k) * k! * StirlingS2[n, k],{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, May 08 2014 *)
-
{a(n)=polcoeff(sum(m=0,n,m!*x^m/prod(k=1,m,1-m^2*k*x +x*O(x^n))),n)}
for(n=0,20,print1(a(n),", "))
-
{a(n)=n!*polcoeff(sum(m=0,n,(exp(m^2*x+x*O(x^n))-1)^m/m^(2*m)),n)}
for(n=0,20,print1(a(n),", "))
-
{a(n)=sum(k=0, n, (k^2)^(n-k) * k! * stirling(n, k, 2))}
for(n=0,20,print1(a(n),", "))
A229259
O.g.f.: Sum_{n>=0} n! * n^n * x^n / Product_{k=1..n} (1 - n^2*k*x).
Original entry on oeis.org
1, 1, 9, 259, 15789, 1693771, 287145789, 71487432619, 24798142070109, 11518873418467051, 6945333793188487869, 5301472723402989073579, 5018547949600497090304029, 5790959348524892656227425131, 8026963462960378548022418765949, 13197920271743736945902641688868139
Offset: 0
O.g.f.: A(x) = 1 + x + 9*x^2 + 259*x^3 + 15789*x^4 + 1693771*x^5 +...
where
A(x) = 1 + x/(1-x) + 2!*2^2*x^2/((1-2^2*1*x)*(1-2^2*2*x)) + 3!*3^3*x^3/((1-3^2*1*x)*(1-3^2*2*x)*(1-3^2*3*x)) + 4!*4^4*x^4/((1-4^2*1*x)*(1-4^2*2*x)*(1-4^2*3*x)*(1-4^2*4*x)) +...
Exponential Generating Function.
E.g.f.: E(x) = 1 + x + 9*x^2/2! + 259*x^3/3! + 15789*x^4/4! + 1693771*x^5/5! +...
where
E(x) = 1 + (exp(x)-1) + (exp(4*x)-1)^2/2^2 + (exp(9*x)-1)^3/3^3 + (exp(16*x)-1)^4/4^4 + (exp(25*x)-1)^5/5^5 +...
-
Flatten[{1,Table[Sum[k^(2*n-k) * k! * StirlingS2[n, k],{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, May 08 2014 *)
-
{a(n)=polcoeff(sum(m=0,n,m!*m^m*x^m/prod(k=1,m,1-m^2*k*x +x*O(x^n))),n)}
for(n=0,20,print1(a(n),", "))
-
{a(n)=n!*polcoeff(sum(m=0,n,(exp(m^2*x+x*O(x^n))-1)^m/m^m),n)}
for(n=0,20,print1(a(n),", "))
-
{a(n)=sum(k=0, n, k^(2*n-k) * k! * stirling(n, k, 2))}
for(n=0,20,print1(a(n),", "))
A245322
E.g.f.: Sum_{n>=0} sin(n*x)^n.
Original entry on oeis.org
1, 1, 8, 161, 6016, 360421, 31628288, 3823725821, 609263681536, 123729353398441, 31195066498285568, 9560281195915697081, 3500145542231863853056, 1508772905238685631514061, 756360258034794813559144448, 436312320288025061112662937941, 286966475921556619941746443288576
Offset: 0
-
nmax=20; Flatten[{1,Rest[CoefficientList[Series[Sum[Sin[k*x]^k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!]}]
Flatten[{1,Table[Sum[(-1)^k * (n-2*k)^n * 2^(2*k-n) * Sum[Binomial[n-2*k,j] * (-1)^j * (n-2*k-2*j)^n,{j,0,n-2*k}],{k,0,n/2}],{n,1,20}]}]
-
{a(n)=n!*polcoeff(sum(k=0, n, sin(k*x+x*O(x^n))^k), n)}
for(n=0, 20, print1(a(n), ", "))
A195263
E.g.f.: Sum_{n>=0} 3^n*(exp(n*x) - 1)^n.
Original entry on oeis.org
1, 3, 75, 4809, 578415, 112024353, 31851411375, 12493267169169, 6464106627329055, 4265281191267407073, 3495556570494504442575, 3483310917470882398369329, 4147647341931988462919773695, 5815857702618060221437908948993, 9485411994735540168549266106329775
Offset: 0
E.g.f.: A(x) = 1 + 3*x + 75*x^2/2! + 4809*x^3/3! + 578415*x^4/4! +...
where
A(x) = 1 + 3*(exp(x)-1) + 3^2*(exp(2*x)-1)^2 + 3^3*(exp(3*x)-1)^3 +...
-
Flatten[{1, Table[Sum[3^k * k^n * k! * StirlingS2[n,k], {k,0,n}], {n,1,20}]}] (* Vaclav Kotesovec, Oct 04 2020 *)
-
{a(n)=local(X=x+x*O(x^n)); n!*polcoeff(sum(m=0, n, 3^m*(exp(m*X)-1)^m), n)}
-
{Stirling2(n, k)=if(k<0||k>n, 0, sum(i=0, k, (-1)^i*binomial(k, i)/k!*(k-i)^n))}
{a(n)=sum(k=0, n, 3^k*k^n*k!*Stirling2(n, k))}
A195415
E.g.f.: Sum_{n>=1} tanh(n*x)^n = Sum_{n>=1} a(n)*4^(n-1)*x^n/n!.
Original entry on oeis.org
1, 2, 10, 92, 1351, 28982, 855100, 33214232, 1642999501, 100843185962, 7520379392890, 669760178257172, 70211429619908851, 8558006664633638942, 1200128210993564085880, 191861070874818576596912, 34685967730611200643509401, 7041037426518318365605795922
Offset: 1
E.g.f.: A(x) = x + 8*x^2/2! + 160*x^3/3! + 5888*x^4/4! + 345856*x^5/5! +...
or, equivalently,
A(x) = x + 2*4*x^2/2! + 10*4^2*x^3/3! + 92*4^3*x^4/4! + 1351*4^4*x^5/5! +...
where
A(x) = tanh(x) + tanh(2*x)^2 + tanh(3*x)^3 + tanh(4*x)^4 + tanh(5*x)^5 +...
-
seq(coeff(n!/4^(n-1)*series(add(tanh(n*x)^n, n = 1..100), x, 101), x, n), n = 1..100); # Peter Bala, May 29 2022
-
nmax = 20; Rest[CoefficientList[Series[Sum[Tanh[k*x]^k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! / 4^(Range[0, nmax] - 1)] (* Vaclav Kotesovec, May 31 2022 *)
-
{a(n)=local(X=x+x*O(x^n), Egf); Egf=sum(m=1, n, tanh(m*X)^m); n!/4^(n-1)*polcoeff(Egf, n)}
Comments