cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A302860 a(n) = [x^n] theta_3(x)^n/(1 - x), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 3, 9, 27, 89, 333, 1341, 5449, 21697, 84663, 327829, 1275739, 5020457, 19964623, 79883141, 320317827, 1284656385, 5152761033, 20686311261, 83182322509, 335110196569, 1352277390001, 5463873556381, 22097867887045, 89441286136465, 362277846495883, 1468465431530457
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 14 2018

Keywords

Comments

a(n) = number of integer lattice points inside the n-dimensional hypersphere of radius sqrt(n).

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[EllipticTheta[3, 0, x]^n/(1 - x), {x, 0, n}], {n, 0, 26}]
    Table[SeriesCoefficient[1/(1 - x) Sum[x^k^2, {k, -n, n}]^n, {x, 0, n}], {n, 0, 26}]

Formula

a(n) = A122510(n,n).
a(n) ~ c / (sqrt(n) * r^n), where r = 0.241970723224463308846762732757915397312... (= radius of convergence A166952) and c = 0.716940866073606328... - Vaclav Kotesovec, Apr 14 2018

A341396 Number of integer solutions to (x_1)^2 + (x_2)^2 + ... + (x_7)^2 <= n.

Original entry on oeis.org

1, 15, 99, 379, 953, 1793, 3081, 5449, 8893, 12435, 16859, 24419, 33659, 42115, 53203, 69779, 88273, 106081, 125821, 153541, 187981, 217437, 248741, 298469, 351277, 394691, 446939, 515259, 589307, 657683, 728803, 828259, 939223, 1029159, 1124023, 1260103
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Comments

Partial sums of A008451.

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, `if`(n<0 or k<1, 0,
          b(n, k-1)+2*add(b(n-j^2, k-1), j=1..isqrt(n))))
        end:
    a:= proc(n) option remember; b(n, 7)+`if`(n>0, a(n-1), 0) end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 35; CoefficientList[Series[EllipticTheta[3, 0, x]^7/(1 - x), {x, 0, nmax}], x]
    Table[SquaresR[7, n], {n, 0, 35}] // Accumulate
  • PARI
    my(q='q+O('q^(55))); Vec((eta(q^2)^5/(eta(q)^2*eta(q^4)^2))^7/(1-q)) \\ Joerg Arndt, Jun 21 2024

Formula

G.f.: theta_3(x)^7 / (1 - x).
a(n^2) = A055413(n).

A341398 Number of integer solutions to (x_1)^2 + (x_2)^2 + ... + (x_9)^2 <= n.

Original entry on oeis.org

1, 19, 163, 835, 2869, 7189, 14581, 27253, 49861, 84663, 129303, 190071, 284055, 409335, 550455, 732855, 995241, 1312617, 1656153, 2077497, 2634777, 3300057, 4003641, 4804281, 5872665, 7129227, 8363307, 9784491, 11635755, 13670475, 15727755, 18066315, 20950491
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Comments

Partial sums of A008452.

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, `if`(n<0 or k<1, 0,
          b(n, k-1)+2*add(b(n-j^2, k-1), j=1..isqrt(n))))
        end:
    a:= proc(n) option remember; b(n, 9)+`if`(n>0, a(n-1), 0) end:
    seq(a(n), n=0..32);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 32; CoefficientList[Series[EllipticTheta[3, 0, x]^9/(1 - x), {x, 0, nmax}], x]
    Table[SquaresR[9, n], {n, 0, 32}] // Accumulate

Formula

G.f.: theta_3(x)^9 / (1 - x).
a(n^2) = A055415(n).

A341399 Number of integer solutions to (x_1)^2 + (x_2)^2 + ... + (x_10)^2 <= n.

Original entry on oeis.org

1, 21, 201, 1161, 4541, 12965, 29285, 58085, 110105, 198765, 327829, 503509, 765589, 1152509, 1642109, 2243069, 3083569, 4221529, 5551949, 7115789, 9166133, 11777333, 14763893, 18121973, 22316213, 27634481, 33512921, 39812441, 47674841, 57294401, 67510721, 78592961
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Comments

Partial sums of A000144.

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, `if`(n<0 or k<1, 0,
          b(n, k-1)+2*add(b(n-j^2, k-1), j=1..isqrt(n))))
        end:
    a:= proc(n) option remember; b(n, 10)+`if`(n>0, a(n-1), 0) end:
    seq(a(n), n=0..31);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 31; CoefficientList[Series[EllipticTheta[3, 0, x]^10/(1 - x), {x, 0, nmax}], x]
    Table[SquaresR[10, n], {n, 0, 31}] // Accumulate

Formula

G.f.: theta_3(x)^10 / (1 - x).
a(n^2) = A055416(n).

A302861 a(n) = [x^(n^2)] theta_3(x)^n/(1 - x), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 3, 13, 123, 1281, 16875, 252673, 4031123, 70554353, 1318315075, 26107328109, 549772933959, 12147113355505, 280978137279483, 6780378828922333, 169829490474843659, 4409771551548703649, 118361723203178140163, 3277041835527134201777, 93455465161026267454527
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 14 2018

Keywords

Comments

a(n) = number of integer lattice points inside the n-dimensional hypersphere of radius n.

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[EllipticTheta[3, 0, x]^n/(1 - x), {x, 0, n^2}], {n, 0, 19}]
    Table[SeriesCoefficient[1/(1 - x) Sum[x^k^2, {k, -n, n}]^n, {x, 0, n^2}], {n, 0, 19}]

Formula

a(n) = A122510(n,n^2).

A055426 Number of points in Z^n of norm <= 2.

Original entry on oeis.org

1, 5, 13, 33, 89, 221, 485, 953, 1713, 2869, 4541, 6865, 9993, 14093, 19349, 25961, 34145, 44133, 56173, 70529, 87481, 107325, 130373, 156953, 187409, 222101, 261405, 305713, 355433, 410989, 472821, 541385, 617153, 700613, 792269, 892641
Offset: 0

Views

Author

Keywords

Crossrefs

Row n=2 of A302997. Column 4 of A122510.

Programs

  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{1,5,13,33,89},40] (* Harvey P. Dale, Feb 09 2015 *)

Formula

a(n) = (3+2*n+16*n^2-8*n^3+2*n^4)/3. - corrected by Colin Barker, Jul 07 2013
G.f.: -(x+1)*(9*x^3-x^2-x+1) / (x-1)^5. - Colin Barker, Jul 07 2013
a(0)=1, a(1)=5, a(2)=13, a(3)=33, a(4)=89, a(n)=5*a(n-1)-10*a(n-2)+ 10*a(n-3)- 5*a(n-4)+a(n-5). - Harvey P. Dale, Feb 09 2015

A055427 Number of points in Z^n of norm <= 3.

Original entry on oeis.org

1, 7, 29, 123, 425, 1343, 4197, 12435, 33809, 84663, 198765, 444907, 959801, 2005615, 4064821, 7988867, 15221537, 28122727, 50423741, 87851099, 148962249, 246243487, 397527813, 627798387, 971451697, 1475103511, 2201030157
Offset: 0

Views

Author

Keywords

Crossrefs

Row n=3 of A302997. Column 9 of A122510.

Programs

  • Mathematica
    a[n_] := SeriesCoefficient[1/(1-x) Sum[x^(i^2), {i, -3, 3}]^n, {x, 0, 9}];
    a /@ Range[0, 26] (* Jean-François Alcover, Sep 29 2019, from A302997 *)

Formula

Appears to satisfy a 9-degree polynomial. - Ralf Stephan, Mar 07 2004
Empirical g.f.: (x+1)*(93*x^8+620*x^7-848*x^6+516*x^5-150*x^4+20*x^3+8*x^2-4*x+1) / (x-1)^10. - Colin Barker, Jul 07 2013
Above conjectures confirmed by later additions of b-file from Andrew Howroyd and program from Jean-François Alcover with connection to A302997. - Ray Chandler, Jun 27 2024
a(n) = 1 +1126/315*n +84668/2835*n^3 -418/45*n^2 +2152/135*n^5 -64/15*n^6 +584/945*n^7 -2/45*n^8 -152/5*n^4 +4/2835*n^9. - R. J. Mathar, Aug 03 2025

A164081 Floor of 2^(n-1) times the surface area of the unit sphere in 2n-dimensional space.

Original entry on oeis.org

6, 39, 124, 259, 408, 512, 536, 481, 378, 264, 166, 94, 49, 24, 10, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Jonathan Vos Post, Aug 09 2009

Keywords

Comments

The rounded values of this real sequence is A164082, the ceiling is A164083.
The surface area of n-dimensional sphere of radius r is n*V_n*r^(n-1); see A072478/A072479.
There are only 17 nonzero terms. - G. C. Greubel, Sep 10 2017

Examples

			Table of approximate real values before taking integer part.
========================
n (2*Pi)^n / (n-1)!
1 6.28318531 = A019692
2 39.4784176 = 2*A164102
3 124.025107 = 4*A091925
4 259.757576 = 8*A164109
5 408.026246
6 512.740903
7 536.941018
8 481.957131
9 378.528246
10 264.262568
11 166.041068
12 94.8424365
13 49.6593836
14 24.00147
15 10.7718345
16 4.5120955
17 1.77189576
18 0.654891141
19 0.228600133
20 0.075596684
========================
		

References

  • J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices, and Groups, 2nd ed., New York: Springer-Verlag, p. 9, 1993.
  • H. S. M. Coxeter, Regular Polytopes, 3rd ed., New York: Dover, 1973.
  • D. M. Y. Sommerville, An Introduction to the Geometry of n Dimensions, New York: Dover, p. 136, 1958.

Crossrefs

Programs

  • Maple
    A164081 := proc(n) (2*Pi)^n/(n-1)! ; floor(%) ; end: seq(A164081(n),n=1..80) ; # R. J. Mathar, Sep 09 2009
  • Mathematica
    Table[Floor[(2*Pi)^n/(n - 1)!], {n, 1, 100}] (* G. C. Greubel, Sep 10 2017 *)
  • PARI
    for(n=1,100, print1(floor((2*Pi)^n/(n-1)!), ", ")) \\ G. C. Greubel, Sep 10 2017

Formula

a(n) = floor( (2*Pi)^n/(n-1)! ).

Extensions

Definition corrected by R. J. Mathar, Sep 09 2009

A164082 Rounded value of 2^(n-1) times the surface area of the unit sphere in 2n-dimensional space.

Original entry on oeis.org

6, 39, 124, 260, 408, 513, 537, 482, 379, 264, 166, 95, 50, 24, 11, 5, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Jonathan Vos Post, Aug 09 2009

Keywords

Comments

The floor of this real sequence is A164081, the ceiling is A164083.
The surface area of the n-dimensional sphere of radius r is n*V_n*r^(n-1); see A072478/ A072479.
There are 18 nonzero terms in this sequence. - G. C. Greubel, Sep 11 2017

Examples

			Table of approximate real values before rounding up or down:
========================
n ((2*pi)^n) / (n-1)!
1 6.28318531 = A019692
2 39.4784176 = 2*A164102
3 124.025107 = 4*A091925
4 259.757576 = 8*A164109
5 408.026246
6 512.740903
7 536.941018
8 481.957131
9 378.528246
10 264.262568
11 166.041068
12 94.8424365
13 49.6593836
14 24.00147
15 10.7718345
16 4.5120955
17 1.77189576
18 0.654891141
19 0.228600133
20 0.075596684
========================
		

References

  • Conway, J. H. and Sloane, N. J. A. Sphere Packings, Lattices, and Groups, 2nd ed. New York: Springer-Verlag, p. 9, 1993.
  • Coxeter, H. S. M. Regular Polytopes, 3rd ed. New York: Dover, 1973.
  • Sommerville, D. M. Y. An Introduction to the Geometry of n Dimensions. New York: Dover, p. 136, 1958.

Crossrefs

Programs

  • Maple
    A164082 := proc(n) (2*Pi)^n/(n-1)! ; round(%) ; end: seq(A164082(n),n=1..80) ; # R. J. Mathar, Sep 09 2009
  • Mathematica
    Table[Round[(2*Pi)^n/(n - 1)!], {n, 1, 20}] (* G. C. Greubel, Sep 11 2017 *)
  • PARI
    for(n=1,20, print1(round((2*Pi)^n/(n-1)!), ", ")) \\ G. C. Greubel, Sep 11 2017

Formula

a(n) = round(((2*Pi)^n)/(n-1)!).

Extensions

Definition corrected by R. J. Mathar, Sep 09 2009

A123937 Triangle read by rows: T(x, y) = 0 if y > x, = 1 if y = 0, or = 2*Sum_{k >= 1, x-k^2 >= y} T(x-k^2, y-1) otherwise. The zeros are omitted from the sequence.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 2, 4, 8, 1, 4, 4, 8, 16, 1, 4, 12, 8, 16, 32, 1, 4, 12, 32, 16, 32, 64, 1, 4, 12, 32, 80, 32, 64, 128, 1, 4, 16, 32, 80, 192, 64, 128, 256, 1, 6, 16, 56, 80, 192, 448, 128, 256, 512, 1, 6, 24, 56, 176, 192, 448, 1024, 256, 512, 1024
Offset: 0

Views

Author

David W. Wilson, Oct 30 2006

Keywords

Comments

Comments from R. J. Mathar, Oct 31 2006:
This sequence provides the seeds for the construction of columns (vertical recurrence) of A122510 insofar as each row of A123937 provides two sides of auxiliary arrays b(.,.,.) from which a column of A122510 emerges as the third side:
A122510(d,n)=b(0,d,n) [with an auxiliary, virtual A122510(0,n)=1].
Seeds to construct two sides of b(.,.,.):
b(x,0,n)=A123937(n,x) for x<=n; b(n,y,n)=A123937(n,n) for y>=0.
Recurrence within the b(.,.,.) : b(x,y,n)=b(x,y-1,n)+b(x+1,y-1,n) for x
Graphical support as if the array were built top-down and left-to-right from the seeds:
Triangle stump ("stump" means cut-off/finiteness at the bottom and top)
...................b(n,0,n)...b(n,1,n)...b(n,2,n)....
..............................
.............b(2,0,n)...b(2,1,n)....
.........b(1,0,n)...b(1,1,n)....
...b(0,0,n)..b(0,1,n)...b(0,2,n)....
equals triangle stump (note that the top line is constant) T(x,y)=A123937(x,y)
...................T(n,n)...T(n,n)...T(n,n)....
..............................
.............T(n,2).....b(2,1,n)....
.........T(n,1).....b(1,1,n)....
...T(n,0)....b(0,1,n)...b(0,2,n)....
equals triangle stump
...................T(n,n)...T(n,n)...T(n,n)....
..............................
.............T(n,2).....b(2,1,n)....
.........T(n,1).....b(1,1,n)....
...T(n,0)...A122510(1,n).A122510(2,n).A122510(3,n)....

Examples

			Triangle begins:
1
1 2
1 2 4
1 2 4 8
1 4 4 8 16
1 4 12 8 16 32
1 4 12 32 16 32 64
1 4 12 32 80 32 64 128
		
Previous Showing 11-20 of 21 results. Next