cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A331690 a(n) = Sum_{k=0..n} Stirling2(n,k) * k! * n^(n - k).

Original entry on oeis.org

1, 1, 4, 33, 456, 9445, 272448, 10386817, 503758720, 30202999821, 2189000524800, 188349613075393, 18954958449853440, 2203304642871358741, 292675996808408743936, 44022321302156791898625, 7438113993194856900034560, 1401876939543892434209075581
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 24 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[StirlingS2[n, k] k! n^(n - k), {k, 0, n}], {n, 1, 17}]]
    Table[SeriesCoefficient[Sum[k! x^k/Product[(1 - n j x), {j, 1, k}], {k, 0, n}], {x, 0, n}], {n, 0, 17}]
    Join[{1}, Table[n^(n + 1) PolyLog[-n, 1/(n + 1)]/(n + 1), {n, 1, 17}]]
  • PARI
    a(n) = sum(k=0, n, stirling(n, k, 2)*k!*n^(n-k)); \\ Michel Marcus, Jan 24 2020

Formula

a(n) = [x^n] Sum_{k>=0} k! * x^k / Product_{j=1..k} (1 - n*j*x).
a(n) = n! * [x^n] n / (1 + n - exp(n*x)) for n > 0.
a(n) = n^(n + 1) * Sum_{k>=1} k^n / (n + 1)^(k + 1) for n > 0.
a(n) ~ n! * n^(n+1) / ((n+1) * log(n+1)^(n+1)). - Vaclav Kotesovec, Jun 06 2022

A337026 a(n) = (2/3) * Sum_{k>=0} (2*k + 1)^n / 3^k.

Original entry on oeis.org

1, 2, 7, 38, 277, 2522, 27547, 351038, 5112457, 83764082, 1524907087, 30536665238, 667096092637, 15787642820042, 402374890155427, 10987722264846638, 320046586135452817, 9904844539648850402, 324568009210656076567, 11226512280285374623238
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 11 2020

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( 2*Exp(x)/(3-Exp(2*x)) ))); // G. C. Greubel, Jun 09 2022
    
  • Mathematica
    Table[2^(n + 1) HurwitzLerchPhi[1/3, -n, 1/2]/3, {n, 0, 19}]
    nmax = 19; CoefficientList[Series[2 Exp[x]/(3 - Exp[2 x]), {x, 0, nmax}], x] Range[0, nmax]!
  • Sage
    def A337026_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( 2*exp(x)/(3-exp(2*x)) ).egf_to_ogf().list()
    A337026_list(40) # G. C. Greubel, Jun 09 2022

Formula

E.g.f.: 2 * exp(x) / (3 - exp(2*x)).
a(n) = Sum_{k=0..n} binomial(n,k) * A122704(k).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A123227(k).
a(n) ~ n! * 2^(n+1) / (sqrt(3) * log(3)^(n+1)). - Vaclav Kotesovec, Mar 27 2022
a(n) = 1 + Sum_{k=1..n} 2^(k-1) * binomial(n,k) * a(n-k). - Seiichi Manyama, Dec 24 2023

A354237 Expansion of e.g.f. 1 / (1 - log(1 + 2*x) / 2).

Original entry on oeis.org

1, 1, 0, 2, -8, 64, -592, 6768, -90624, 1395840, -24292608, 471453696, -10094066688, 236340378624, -6007053852672, 164713554069504, -4846361933021184, 152300800682754048, -5091189648734748672, 180386551596145508352, -6752521487083688165376
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 06 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[1/(1 - Log[1 + 2 x]/2), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[StirlingS1[n, k] k! 2^(n - k), {k, 0, n}], {n, 0, 20}]
  • PARI
    my(x='x + O('x^20)); Vec(serlaplace(1/(1-log(1+2*x)/2))) \\ Michel Marcus, Jun 06 2022

Formula

a(n) = Sum_{k=0..n} Stirling1(n,k) * k! * 2^(n-k).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * (k-1)! * (-2)^(k-1) * a(n-k).
a(n) ~ n! * (-1)^(n+1) * 2^(n+1) / (n * log(n)^2) * (1 - (4 + 2*gamma)/log(n) + (12 + 12*gamma + 3*gamma^2 - Pi^2/2)/log(n)^2 + (2*Pi^2*gamma - 32 + 4*Pi^2 - 24*gamma^2 - 8*zeta(3) - 4*gamma^3 - 48*gamma)/log(n)^3 + (80 - 20*Pi^2*gamma + 40*zeta(3)*gamma - 5*Pi^2*gamma^2 + 160*gamma + 5*gamma^4 + 80*zeta(3) + 40*gamma^3 + Pi^4/12 - 20*Pi^2 + 120*gamma^2)/log(n)^4), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jun 06 2022

A340886 a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n,k)^2 * 2^(n-k-1) * a(k).

Original entry on oeis.org

1, 1, 6, 76, 1720, 60816, 3096384, 214579296, 19422473088, 2224980891904, 314675568756736, 53849929134122496, 10966912240761425920, 2621246193301011159040, 726608751113679704248320, 231217063994112487051984896, 83713709650818121936828858368
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 25 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k]^2 2^(n - k - 1) a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 16}]
    nmax = 16; CoefficientList[Series[2/(3 - BesselI[0, 2 Sqrt[2 x]]), {x, 0, nmax}], x] Range[0, nmax]!^2

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = 2 / (3 - BesselI(0,2*sqrt(2*x))).

A383149 Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) = (-1)^k * [m^k] (1/2^(m-n)) * Sum_{k=0..m} k^n * (-1)^m * 3^(m-k) * binomial(m,k).

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 12, 9, 1, 0, 66, 75, 18, 1, 0, 480, 690, 255, 30, 1, 0, 4368, 7290, 3555, 645, 45, 1, 0, 47712, 88536, 52290, 12705, 1365, 63, 1, 0, 608016, 1223628, 831684, 249585, 36120, 2562, 84, 1, 0, 8855040, 19019664, 14405580, 5073012, 915705, 87696, 4410, 108, 1
Offset: 0

Views

Author

Seiichi Manyama, Apr 18 2025

Keywords

Examples

			f_0(m) = 1.
f_1(m) =      -m.
f_2(m) =    -3*m +     m^2.
f_3(m) =   -12*m +   9*m^2 -     m^3.
f_4(m) =   -66*m +  75*m^2 -  18*m^3 +    m^4.
f_5(m) =  -480*m + 690*m^2 - 255*m^3 + 30*m^4 - m^5.
Triangle begins:
  1;
  0,     1;
  0,     3,     1;
  0,    12,     9,     1;
  0,    66,    75,    18,     1;
  0,   480,   690,   255,    30,    1;
  0,  4368,  7290,  3555,   645,   45,  1;
  0, 47712, 88536, 52290, 12705, 1365, 63, 1;
  ...
		

Crossrefs

Columns k=0..3 give A000007, A123227(n-1), A383163, A383164.
Row sums give A122704.

Programs

  • PARI
    T(n, k) = sum(j=k, n, 2^(n-j)*stirling(n, j, 2)*abs(stirling(j, k, 1)));
    
  • Sage
    def a_row(n):
        s = sum(2^(n-k)*stirling_number2(n, k)*rising_factorial(x, k) for k in (0..n))
        return expand(s).list()
    for n in (0..9): print(a_row(n))

Formula

f_n(m) = (1/2^(m-n)) * Sum_{k=0..m} k^n * (-1)^m * 3^(m-k) * binomial(m,k).
T(n,k) = [m^k] f_n(-m).
T(n,k) = Sum_{j=k..n} 2^(n-j) * Stirling2(n,j) * |Stirling1(j,k)|.
T(n,k) = [x^k] Sum_{k=0..n} 2^(n-k) * Stirling2(n,k) * RisingFactorial(x,k).
Sum_{k=0..n} (-1)^k * T(n,k) = f_m(1) = -2^(n-1) for n > 0.
E.g.f. of column k (with leading zeros): g(x)^k / k! with g(x) = -log(1 - (exp(2*x) - 1)/2).

A332700 A(n, k) = Sum_{j=0..n} j!*Stirling2(n, j)*(k-1)^(n-j), for n >= 0 and k >= 0, read by ascending antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 3, 1, 1, 1, 24, 13, 4, 1, 1, 1, 120, 75, 22, 5, 1, 1, 1, 720, 541, 160, 33, 6, 1, 1, 1, 5040, 4683, 1456, 285, 46, 7, 1, 1, 1, 40320, 47293, 15904, 3081, 456, 61, 8, 1, 1, 1, 362880, 545835, 202672, 40005, 5656, 679, 78, 9, 1, 1
Offset: 0

Views

Author

Peter Luschny, Feb 28 2020

Keywords

Examples

			Array begins:
[0] 1, 1,       1,       1,        1,         1,         1, ...    A000012
[1] 1, 1,       1,       1,        1,         1,         1, ...    A000012
[2] 1, 2,       3,       4,        5,         6,         7, ...    A000027
[3] 1, 6,       13,      22,       33,        46,        61, ...   A028872
[4] 1, 24,      75,      160,      285,       456,       679, ...
[5] 1, 120,     541,     1456,     3081,      5656,      9445, ...
[6] 1, 720,     4683,    15904,    40005,     84336,     158095, ...
[7] 1, 5040,    47293,   202672,   606033,    1467376,   3088765, ...
[8] 1, 40320,   545835,  2951680,  10491885,  29175936,  68958295, ...
[9] 1, 362880,  7087261, 48361216, 204343641, 652606336, 1731875605, ...
       A000142, A000670, A122704,  A255927,   A326324, ...
Seen as a triangle:
[0] [1]
[1] [1, 1]
[2] [1, 1,     1]
[3] [1, 2,     1,     1]
[4] [1, 6,     3,     1,     1]
[5] [1, 24,    13,    4,     1,    1]
[6] [1, 120,   75,    22,    5,    1,   1]
[7] [1, 720,   541,   160,   33,   6,   1,  1]
[8] [1, 5040,  4683,  1456,  285,  46,  7,  1, 1]
[9] [1, 40320, 47293, 15904, 3081, 456, 61, 8, 1, 1]
		

Crossrefs

The matrix transpose of A326323.

Programs

  • Maple
    # Prints array by row.
    A := (n, k) -> add(combinat:-eulerian1(n, j)*k^j, j=0..n):
    seq(print(seq(A(n,k), k=0..10)), n=0..8);
    # Alternative:
    egf := n -> `if`(n=1, 1/(1-x), (n-1)/(n - exp((n-1)*x))):
    ser := n -> series(egf(n), x, 21):
    for n from 0 to 6 do seq(n!*coeff(ser(k), x, n), k=0..9) od;
    # Or:
    A := (n, k) -> if k = 0 or n = 0 then 1 elif k = 1 then n! else
    polylog(-n, 1/k)*(k-1)^(n+1)/k fi:
    for n from 0 to 6 do seq(A(n, k), k=0..9) od;
  • Mathematica
    A332700[n_, k_] := n! + Sum[j! StirlingS2[n, j] (k-1)^(n-j), {j, n-1}];
    Table[A332700[n-k, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Feb 01 2024 *)
  • Sage
    def T(n, k):
        return sum(factorial(j)*stirling_number2(n, j)*(k-1)^(n-j) for j in range(n+1))
    for n in range(8): print([T(n, k) for k in range(8)])

Formula

A(n, k) = Sum_{j=0..n} E(n, j)*k^j, where E(n, k) = A173018(n, k).
A(n, 1) = n!*[x^n] 1/(1-x).
A(n, k) = n!*[x^n] (k-1)/(k - exp((k-1)*x)) for k != 1.
A(n, k) = PolyLog(-n, 1/k)*(k-1)^(n+1)/k for k >= 2.

A344913 Table read by rows, T(n, k) (for 0 <= k <= n) = (-2)^(n - k)*k!*Stirling2(n, k).

Original entry on oeis.org

1, 0, 1, 0, -2, 2, 0, 4, -12, 6, 0, -8, 56, -72, 24, 0, 16, -240, 600, -480, 120, 0, -32, 992, -4320, 6240, -3600, 720, 0, 64, -4032, 28896, -67200, 67200, -30240, 5040, 0, -128, 16256, -185472, 653184, -1008000, 766080, -282240, 40320
Offset: 0

Views

Author

Peter Luschny, Aug 14 2021

Keywords

Examples

			Table starts:
[0] 1;
[1] 0,    1;
[2] 0,   -2,     2;
[3] 0,    4,   -12,       6;
[4] 0,   -8,    56,     -72,     24;
[5] 0,   16,  -240,     600,   -480,      120;
[6] 0,  -32,   992,   -4320,   6240,    -3600,    720;
[7] 0,   64, -4032,   28896, -67200,    67200, -30240,    5040;
[8] 0, -128, 16256, -185472, 653184, -1008000, 766080, -282240, 40320.
		

Crossrefs

Cf. A155585 (row sums), A122704 (alternating row sums, signed), A278075 (signed Fubini polynomials), A000142 (main diagonal), A048993 (Stirling2).

Programs

  • Maple
    T := (n, k) -> (-2)^(n - k)*k!*Stirling2(n, k):
    seq(seq(T(n, k), k = 0..n), n = 0..9);
  • PARI
    T(n, k) = (-2)^(n - k)*k!*stirling(n, k, 2); \\ Michel Marcus, Aug 14 2021

Formula

T(n, k) = 2^(n - k)*Sum_{j=0..n} (-1)^(n - j)*binomial(k, j)*j^n.
Let row(n, x) be the n-th row polynomial, then B(n) = row(n-1, 1)*n / (4^n - 2^n) is the n-th Bernoulli number (with B(1) = 1/2) for n >= 1.

A371298 E.g.f. satisfies A(x) = 2/(3 - exp(2*x*A(x)^2)).

Original entry on oeis.org

1, 1, 8, 124, 2928, 93496, 3773536, 184354752, 10580324096, 697840047616, 52018550966784, 4324989984168448, 396842631019350016, 39833949803142014976, 4342129457277000261632, 510808184298890239393792, 64504327889586673547673600, 8703038855093947990994452480
Offset: 0

Views

Author

Seiichi Manyama, Mar 18 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*(2*n+k)!*stirling(n, k, 2))/(2*n+1)!;

Formula

a(n) = (1/(2*n+1)!) * Sum_{k=0..n} 2^(n-k) * (2*n+k)! * Stirling2(n,k).
Previous Showing 11-18 of 18 results.