cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A332840 Number of fixed-point free involutions in a fixed Sylow 2-subgroup of the symmetric group of degree 2n.

Original entry on oeis.org

1, 1, 3, 3, 17, 17, 51, 51, 417, 417, 1251, 1251, 7089, 7089, 21267, 21267, 206657, 206657, 619971, 619971, 3513169, 3513169, 10539507, 10539507, 86175969, 86175969, 258527907, 258527907, 1464991473, 1464991473, 4394974419, 4394974419, 44854599297, 44854599297, 134563797891
Offset: 0

Views

Author

Nick Krempel, Feb 26 2020

Keywords

Comments

As a Sylow 2-subgroup of S_(4n+2) is isomorphic to a Sylow 2-subgroup of S_(4n) direct product C_2, the terms of this sequence come in equal pairs.
Also the number of fixed-point free involutory automorphisms of the full binary tree with 2n leaves (hence 4n-1 vertices) in which all left children are complete (perfect) binary trees.

Examples

			For n=2, the a(2)=3 fixed-point free involutions in a fixed Sylow 2-subgroup of S_4 (which subgroup is isomorphic to the dihedral group of degree 4) are (12)(34), (13)(24), and (14)(23).
		

Crossrefs

Programs

  • Maple
    b:= proc(n) b(n):=`if`(n=0, 0, b(n-1)^2+2^(2^(n-1)-1)) end:
    a:= n-> (l-> mul(`if`(l[i]=1, b(i), 1), i=1..nops(l)))(Bits[Split](n)):
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 27 2020
  • Mathematica
    A332758[n_] := A332758[n] = If[n == 0, 0, A332758[n-1]^2 + 2^(2^(n-1)-1)];
    a[n_] := Product[A332758[k], {k, Flatten@ Position[ Reverse@ IntegerDigits[ n, 2], 1]}];
    a /@ Range[0, 34] (* Jean-François Alcover, Apr 10 2020 *)
  • PARI
    a(n)={my(v=vector(logint(max(1,n), 2)+1)); v[1]=1; for(n=2, #v, v[n]=v[n-1]^2 + 2^(2^(n-1)-1)); prod(k=1, #v, if(bittest(n,k-1), v[k], 1))} \\ Andrew Howroyd, Feb 27 2020

Formula

a(n) = Product(A332758(k+1)) where k ranges over the positions of 1 bits in the binary expansion of n.
a(n) = big-Theta(C^n) for C = 2.1522868238..., i.e., A*C^n < a(n) < B*C^n for constants A, B (but it's not the case that a(n) ~ C^n as lim inf a(n)/C^n and lim sup a(n)/C^n differ).
a(n) = A332869(floor(n/2)). - Andrew Howroyd, Feb 27 2020

Extensions

Terms a(18) and beyond from Andrew Howroyd, Feb 27 2020

A269799 Number of vertices of the fractional perfect matching polytope for the complete graph on n vertices.

Original entry on oeis.org

0, 1, 1, 3, 22, 25, 717, 1057, 39196, 98829
Offset: 1

Views

Author

Pontus von Brömssen, Mar 05 2016

Keywords

Comments

The fractional perfect matching polytope of a graph is the set of nonnegative edge weights such that the sum of the weights of the edges incident with any given vertex equals 1.
Sequence up to n=10 computed with PORTA (see links) by Pontus von Brömssen in December 2010.
a(n) equals the number of facets of the polytope P_n defined in Eickmeyer and Yoshida (2008), at least up to n=10.

Examples

			For n=4 the fractional perfect matching polytope is the convex hull of the 3 perfect matchings of K_4, so a(4)=3. For n=6, in addition to the 15 perfect matchings of K_6, the 10 pairs of disjoint triangles with edge weights 1/2 are vertices of the polytope, so a(6)=25.
		

Crossrefs

Cf. A123023.

A376922 Variance of n-th power of a standard normal random variable.

Original entry on oeis.org

1, 2, 15, 96, 945, 10170, 135135, 2016000, 34459425, 653836050, 13749310575, 316126087200, 7905853580625, 213439785208650, 6190283353629375, 191894675132160000, 6332659870762850625, 221641908024728441250, 8200794532637891559375, 319830558102716120460000
Offset: 1

Views

Author

Adam M. Scherlis, Oct 10 2024

Keywords

Comments

The variance of the n-th sample moment is exactly a(n) / k for sample size k.
For a non-standard normal r.v. X ~ N(0, sigma^2), Var(X^n) = a(n) sigma^(2n).

Examples

			If Z ~ N(0, 1), then Var(Z) = 1, Var(Z^2) = 2, Var(Z^3) = 15, etc.
		

References

  • M. G. Kendall and A. Stuart, The Advanced Theory of Statistics Volume 1, Charles Griffin & Company, 1963, page 229.

Crossrefs

Formula

a(n) = M(2n) - M(n)^2, where M(n) = A123023(n) are the moments of N(0, 1).

A378100 Number of involutions in the symmetric group S_n with at least one fixed point.

Original entry on oeis.org

0, 1, 1, 4, 7, 26, 61, 232, 659, 2620, 8551, 35696, 129757, 568504, 2255345, 10349536, 44179711, 211799312, 962854399, 4809701440, 23103935021, 119952692896, 605135328337, 3257843882624, 17175956434375, 95680443760576, 525079354619951, 3020676745975552
Offset: 0

Views

Author

Maniru Ibrahim, Nov 16 2024

Keywords

Comments

In other words, a(n) is the number of involutions in S_n that are not derangements.

Examples

			a(4) = 7: (1,2)(3)(4), (1,3)(2)(4), (1,4)(2)(3), (1)(2,3)(4), (1)(2,4)(3), (1)(2)(3,4), (1)(2)(3)(4).
		

Crossrefs

Cf. A000085 (involutions), A000166 (derangements), A002467 (permutations with a fixed point), A099174, A123023 (involutions that are derangements).

Programs

  • Maple
    a := proc(n)
        local k, total, deranged;
        total := add(factorial(n)/(factorial(n-2*k)*2^k*factorial(k)), k=0..floor(n/2));
        if mod(n, 2) = 0 then
            deranged := factorial(n)/(2^(n/2)*factorial(n/2));
        else
            deranged := 0;
        end if;
        return total - deranged;
    end proc:
    seq(a(n), n=1..20);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<4, [0, 1$2, 4][n+1],
          a(n-1)+(2*n-3)*a(n-2)-(n-2)*(a(n-3)+(n-3)*a(n-4)))
        end:
    seq(a(n), n=0..27);  # Alois P. Heinz, Nov 24 2024
  • Mathematica
    a[n_] := Module[{total, deranged},
      total = Sum[n! / ((n - 2 k)! * 2^k * k!), {k, 0, Floor[n/2]}];
      deranged = If[EvenQ[n], n! / (2^(n/2) * (n/2)!), 0];
      total - deranged
    ];
    Table[a[n], {n, 1, 20}]
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(x+x^2/2)-exp(x^2/2))) \\ Joerg Arndt, Nov 27 2024
  • Python
    from math import factorial
    def a(n):
        total = sum(factorial(n) // (factorial(n - 2 * k) * 2**k * factorial(k))
                    for k in range(n // 2 + 1))
        deranged = factorial(n) // (2**(n // 2) * factorial(n // 2)) if n % 2 == 0 else 0
        return total - deranged
    print([a(n) for n in range(1, 21)])
    

Formula

a(n) = Sum_{k=0..floor(n/2)} n! / ((n-2k)! * 2^k * k!) - (n! / (2^(n/2) * (n/2)!) * (1 - (n mod 2))).
a(n) = A000085(n) - A123023(n).
a(n) = A000085(n) for odd n.
From Alois P. Heinz, Nov 24 2024: (Start)
E.g.f.: exp(x*(2+x)/2)-exp(x^2/2).
a(n) = Sum_{k=1..n} A099174(n,k). (End)
Previous Showing 21-24 of 24 results.