cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A243010 Pseudoprimes to base 5 that are not squarefree.

Original entry on oeis.org

4, 124, 11476, 59356, 80476, 91636, 250876, 261964, 482516, 1385836, 1926676, 2428084, 2589796, 3743476, 4101796, 6797764, 9155476, 10701076, 10743436, 11263396, 13799836, 13859956, 15570556, 20396476
Offset: 1

Views

Author

Felix Fröhlich, Aug 18 2014

Keywords

Comments

Any term is divisible by the square of a base 5 Wieferich prime (A123692).
Intersection of A005936 and A013929. - Michel Marcus, Aug 21 2014

Crossrefs

Programs

  • PARI
    forcomposite(n=1, 1e9, if(Mod(5, n)^(n-1)==1, if(!issquarefree(n), print1(n, ", "))))

A298951 Wieferich primes to base 22.

Original entry on oeis.org

13, 673, 1595813, 492366587, 9809862296159
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jan 30 2018

Keywords

Comments

Prime numbers p such that p^2 divides 22^(p-1) - 1.
Next term, if it exists, is larger than 8.72*10^13.
492366587 was found by Montgomery (cf. Montgomery, 1993). - Felix Fröhlich, Jan 30 2018

Crossrefs

Wieferich primes to base b: A001220 (b=2), A014127 (b=3), A123692 (b=5), A212583 (b=6), A123693 (b=7), A045616 (b=10), A111027 (b=12), A128667 (b=13), A234810 (b=14), A242741 (b=15), A128668 (b=17), A244260 (b=18), A090968 (b=19), A242982 (b=20), this sequence (b=22), A128669 (b=23), A306255 (b=26), A306256 (b=30).

Programs

  • PARI
    forprime(p=1, , if(Mod(22, p^2)^(p-1)==1, print1(p, ", ")))

A306255 Wieferich primes to base 26.

Original entry on oeis.org

3, 5, 71, 486999673, 6695256707
Offset: 1

Views

Author

Jianing Song, Feb 01 2019

Keywords

Comments

Prime numbers p such that p^2 divides 26^(p-1) - 1.
No more terms up to 9.8*10^13.

Crossrefs

Wieferich primes to base b: A001220 (b=2), A014127 (b=3), A123692 (b=5), A212583 (b=6), A123693 (b=7), A045616 (b=10), A111027 (b=12), A128667 (b=13), A234810 (b=14), A242741 (b=15), A128668 (b=17), A244260 (b=18), A090968 (b=19), A242982 (b=20), A298951 (b=22), A128669 (b=23), this sequence (b=26), A306256 (b=30).

Programs

  • Mathematica
    Select[Prime[Range[26*10^6]],PowerMod[26,#-1,#^2]==1&] (* The program generates the first 4 terms of the sequence. *) (* Harvey P. Dale, Aug 23 2024 *)
  • PARI
    forprime(p=2, , if(Mod(26, p^2)^(p-1)==1, print1(p, ", ")))

A306256 Wieferich primes to base 30.

Original entry on oeis.org

7, 160541, 94727075783
Offset: 1

Views

Author

Jianing Song, Feb 01 2019

Keywords

Comments

Prime numbers p such that p^2 divides 30^(p-1) - 1.
No more terms up to 9.8*10^13.

Crossrefs

Wieferich primes to base b: A001220 (b=2), A014127 (b=3), A123692 (b=5), A212583 (b=6), A123693 (b=7), A045616 (b=10), A111027 (b=12), A128667 (b=13), A234810 (b=14), A242741 (b=15), A128668 (b=17), A244260 (b=18), A090968 (b=19), A242982 (b=20), A298951 (b=22), A128669 (b=23), A306255 (b=26), this sequence (b=30).

Programs

  • PARI
    forprime(p=2, , if(Mod(30, p^2)^(p-1)==1, print1(p, ", ")))

A247072 Smallest Wieferich prime (> sqrt(n)) in base n.

Original entry on oeis.org

2, 1093, 11, 1093, 20771, 66161, 5, 3, 11, 487, 71, 2693, 863, 29, 29131, 1093, 46021, 5, 7, 281
Offset: 1

Views

Author

Eric Chen, Nov 16 2014

Keywords

Comments

a(n) = Smallest prime such that n appears in A143548. - Eric Chen, Nov 26 2014
The square of a(n) is the smallest squared prime that is a pseudoprime (> n) in base n; for example, a(2) = 1093, and 1093^2 = 1194649 is the smallest squared prime that is pseudoprime in base 2. - Eric Chen, Nov 26 2014
Is a(n) defined for all n? - Eric Chen, Nov 26 2014
Does every prime appear in this sequence? - Eric Chen, Nov 26 2014
a(22)..a(28) = {13, 13, 5, 20771, 71, 11, 19}, a(30)..a(46) = {7, 7, 1093, 233, 46145917691, 1613, 66161, 77867, 17, 8039, 11, 29, 23, 103, 229, 1283, 829}, a(48)..a(49) = {7, 491531}, a(51)..a(60) = {41, 461, 47, 19, 30109, 647, 47699, 131, 2777, 29}, a(62)..a(71) = {19, 23, 1093, 17, 89351671, 47, 19, 19, 13, 47}, a(74)..a(81) = {1251922253819, 17, 37, 32687, 43, 263, 13, 11}, a(83)..a(100) = {4871, 163, 11779, 68239, 1999, 2535619637, 13, 6590291053, 293, 727, 509, 11, 2137, 109, 2914393, 28627, 13, 487}; a(n) is currently unknown for n = {21, 29, 47, 50, 61, 72, 73, 82, 126, 132, 154, 186, 187, 188, 200, 203, 222, 231, 237, 301, 304, 309, 311, 327, 335, 347, 351, 355, 357, 435, 441, 454, 458, 496, 541, 542, 546, 554, 570, 593, 609, 610, 639, 640, 654, 662, 668, 674, 692, 697, 698, 701, 718, 724, 725, 727, 733, 743, 760, 772, 775, 777, 784, 798, 807, 808, 812, 829, 841, 858, 860, 871, 883, 912, 919, 944, 980, 983, 986, ...}. - Eric Chen, Nov 26 2014
a(21) > 3.4 * 10^13. - Eric Chen, Nov 26 2014

Examples

			a(12) = 2693 because the Wieferich primes to base 12 are 2693, 123653, ..., and 2693 is greater than sqrt(12), so a(12) = 2693.
a(17) = 46021 because the Wieferich primes to base 17 are 2, 3, 46021, 48947, 478225523351, ..., but neither 2 nor 3 is greater than sqrt(17), so a(17) = 46021.
		

Crossrefs

Programs

  • Mathematica
    a247072[n_] := Block[{p = Int[Sqrt[n]]+1}, While[!PrimeQ[p] || [p < 10^8 && PowerMod[n, p - 1, p^2] != 1], p++]; If[p == 10^8, 0, p]]; Table[ a247072[n], {n, 100}] (* Eric Chen, Nov 27 2014 *)
  • PARI
    a(n)=forprime(p=sqrtint(n)+1,,if(Mod(n^(p-1),p^2)==1,return(p)))
    n=1; while(n<101, print1(a(n), ", "); n++) \\ Charles R Greathouse IV, Nov 16 2014

A342391 Odd numbers k such that the ring of integers of Q(5^(1/k)) is not Z[5^(1/k)].

Original entry on oeis.org

20771, 40487, 62313, 103855, 121461, 145397, 186939, 202435, 228481, 270023, 283409, 311565, 353107, 364383, 394649, 436191, 445357, 477733, 519275, 526331, 560817, 602359, 607305, 643901, 685443, 688279, 726985, 768527, 769253, 810069, 850227, 851611, 893153, 931201, 934695, 976237
Offset: 1

Views

Author

Jianing Song, Mar 10 2021

Keywords

Comments

For k > 1, a != 1 being a squarefree number (a != -1 unless k is a power of 2), then the ring of integers of Q(a^(1/k)) is Z[a^(1/k)] if and only if: for every p dividing k, we have a^(p-1) !== 1 (mod p^2). In other words, O_Q(a^(1/k)) = Z[a^(1/k)] if and only if none of the prime factors of k is a Wieferich prime of base a. See Theorem 5.3 of the paper of Keith Conrad.
In general, if a^d == 1 (mod p^2) for some d|(p-1), then it is easy to show that x = (1 + a^(d/p) + a^(2*d/p) + ... + a^((p-1)*d/p))/p is an algebraic integer not in Z[a^(1/p)].
Here a = 5. Since 2 is Wieferich prime of base 5, for all even k we have O_Q(a^(1/k)) != Z[a^(1/k)]. There are only 6 other known Wieferich primes of base 5 (A123692) up to 9.7*10^14.

Examples

			5^10385 == 1 (mod 20771^2), so x = (1 + 5^(10385/20771) + 5^(2*10385/20771) + ... + 5^(20770*10385/20771))/20771 is an algebraic integer not in Z[5^(1/20771)].
		

Crossrefs

Programs

  • PARI
    Wieferich_up_to_n(lim) = my(v=[]); forprime(p=2, lim, if(Mod(5,p^2)^(p-1)==1, v=concat(v,p))); v
    Up_to_n(lim) = my(pv=Wieferich_up_to_n(lim), list=[]); for(i=2, #pv, my(p=pv[i]); forstep(k=1, lim\p, 2, list=concat(list, k*p))); list=Set(list); list \\ corrected by Jianing Song, Mar 21 2022

A331424 Prime numbers p such that p^2 divides 31^(p-1) - 1.

Original entry on oeis.org

7, 79, 6451, 2806861
Offset: 1

Views

Author

Seiichi Manyama, Jan 16 2020

Keywords

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 233.

Crossrefs

Wieferich primes to base b: A001220 (b=2), A014127 (b=3), A123692 (b=5), A123693 (b=7), A128667 (b=13), A128668 (b=17), A090968 (b=19), A128669 (b=23), this sequence (b=31), A331426 (b=37), A331427 (b=41).
Cf. A039951.

Programs

  • Mathematica
    Select[Range[3*10^6], PrimeQ[#] && PowerMod[31, # - 1, #^2] == 1 &] (* Amiram Eldar, May 05 2021 *)
  • PARI
    forprime(p=2, 1e8, if(Mod(31, p^2)^(p-1)==1, print1(p", ")))

A331426 Prime numbers p such that p^2 divides 37^(p-1) - 1.

Original entry on oeis.org

2, 3, 77867, 76407520781
Offset: 1

Views

Author

Seiichi Manyama, Jan 16 2020

Keywords

Comments

a(4) from Fischer link. - M. F. Hasler, Jan 16 2020

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 233.

Crossrefs

Wieferich primes to base b: A001220 (b=2), A014127 (b=3), A123692 (b=5), A123693 (b=7), A128667 (b=13), A128668 (b=17), A090968 (b=19), A128669 (b=23), A331424 (b=31), this sequence (b=37), A331427 (b=41).
Cf. A039951.

Programs

  • Mathematica
    Select[Range[10^5], PrimeQ[#] && PowerMod[37, # - 1, #^2] == 1 &] (* Amiram Eldar, May 05 2021 *)
  • PARI
    forprime(p=2, 1e8, if(Mod(37, p^2)^(p-1)==1, print1(p", ")))

A331427 Prime numbers p such that p^2 divides 41^(p-1) - 1.

Original entry on oeis.org

2, 29, 1025273, 138200401
Offset: 1

Views

Author

Seiichi Manyama, Jan 16 2020

Keywords

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 233.

Crossrefs

Wieferich primes to base b: A001220 (b=2), A014127 (b=3), A123692 (b=5), A123693 (b=7), A128667 (b=13), A128668 (b=17), A090968 (b=19), A128669 (b=23), A331424 (b=31), A331426 (b=37), this sequence (b=41).
Cf. A039951.

Programs

  • Mathematica
    Select[Range[1.1*10^6], PrimeQ[#] && PowerMod[41, # - 1, #^2] == 1 &] (* Amiram Eldar, May 05 2021 *)
  • PARI
    forprime(p=2, 1e8, if(Mod(41, p^2)^(p-1)==1, print1(p", ")))

A250206 Least base b > 1 such that b^A000010(n) = 1 (mod n^2).

Original entry on oeis.org

2, 5, 8, 7, 7, 17, 18, 15, 26, 7, 3, 17, 19, 19, 26, 31, 38, 53, 28, 7, 19, 3, 28, 17, 57, 19, 80, 19, 14, 107, 115, 63, 118, 65, 18, 53, 18, 69, 19, 7, 51, 19, 19, 3, 26, 63, 53, 17, 18, 57, 134, 19, 338, 161, 3, 31, 28, 41, 53, 107, 264, 115, 19, 127, 99, 161, 143, 65, 28, 99, 11, 55
Offset: 1

Views

Author

Eric Chen, Feb 21 2015

Keywords

Comments

a(n) = least base b > 1 such that n is a Wieferich number (see A077816).
At least, b = n^2+1 can satisfy this equation, so a(n) is defined for all n.
Least Wieferich number (>1) to base n: 2, 1093, 11, 1093, 2, 66161, 4, 3, 2, 3, 71, 2693, 2, 29, 4, 1093, 2, 5, 3, 281, 2, 13, 4, 5, 2, ...; each is a prime or 4. It is 4 if and only if n mod 72 is in the set {7, 15, 23, 31, 39, 47, 63}.
Does every natural number (>1) appear in this sequence? If yes, do they appear infinitely many times?
For prime n, a(n) = A185103(n), does there exist any composite n such that a(n) = A185103(n)?

Examples

			a(30) = 107 since A000010(30) = 8, 30^2 = 900, and 107 is the least base b > 1 such that b^8 = 1 (mod 900).
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{b = 2, m = EulerPhi[n]}, While[ PowerMod[b, m, n^2] != 1, b++]; b]; f[1] = 2; Array[f, 72] (* Robert G. Wilson v, Feb 28 2015 *)
  • PARI
    a(n)=for(k=2,2^24,if((k^eulerphi(n))%(n^2)==1, return(k)))

Formula

a(prime(n)) = A039678(n) = A185103(prime(n)).
a(A077816(n)) = 2.
a(A242958(n)) <= 3.
Previous Showing 21-30 of 31 results. Next