cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A274653 Numerators of coefficients of z^n/n! for the expansion of Fricke's hypergeometric function F_1(1/2,1/2;z).

Original entry on oeis.org

0, 1, 21, 185, 18655, 307503, 12548151, 305496477, 138343008375, 4464248592375, 323592065474535, 13015087974100485, 2301190559547593805, 110887163426713235625, 11570760017278599886875, 649837647729572203369125, 1250848387902442801195686375, 80233244659365977333374518375
Offset: 0

Views

Author

Wolfdieter Lang, Jul 07 2016

Keywords

Comments

For the denominators see A274654.
The coefficients of z^n for the expansion of F_1(1/2,1/2;z) are A274655(n)/A274656(n).
Fricke's hypergeometric function F_1(a,b;z) = Sum_{n > = 0} f(a,b;n)*z^n/n!, satisfies the recurrence
f(a,b,n) = ((a+n-1)*(b+n-1)/n)*f(a,b;n-1) + c(a,b;n)*(1/(a+n-1) + 1/ (b+n-1) - 2/n), with c(a,b;n) = [z^n/n!]hypergeometric([a,b],[1],z) = risefac(a,n) * risefac(b,n)/n!, where risefac is the rising factorial (Pochhammer's symbol) and the input is f(a,b;0)= 0. See the Fricke I reference, p. 114.
The hypergeometric function F_1(1/2,1/2;z) appears in the formula for (2/Pi) K'(k) + (1/Pi)*log(k^2/16)*(2/Pi)*K(k) = F_1(1/2,1/2;k^2), where K and sqrt(-1)*K' are the real and imaginary quarter periods, and k is the modulus (k^2 is the parameter) of elliptic functions. See the Fricke I reference p. 465, eq. (11), and also Fricke III, p. 2, eq. (3).
(2/Pi)*K(k) = hypergeometric([1/2,1/2],[1],k^2). For the expansion coefficients see A038534/A056982 and also A274657/A123854.

Examples

			The sequence of rationals {r(n)} begins:
0, 1/2, 21/32, 185/128, 18655/4096, 307503/16384, 12548151/131072, 305496477/524288, 138343008375/33554432, 4464248592375/134217728, 323592065474535/1073741824, ....
The expansion of F_1(1/2,1/2;z) begins:
(1/2)*z + (21/32)*z^2/2! + (185/128)*z^3/3! + (18655/4096)*z^4/4! + (307503/16384)*z^5/5! + ..., or
(1/2)*z + (21/64)*z^2 + (185/768)*z^3 + (18655/98304)*z^4 + (102501/655360)*z^5 + ...
		

Crossrefs

Formula

a(n) = numerator(r(n)), with the rationals (in lowest terms) r(n) = [z^n/n!]F_1(1/2,1/2;z), with the hypergeometric function F_1 given by Fricke. The recurrence of the coefficients r(n) = f(1/2,1/2;n) is obtained from the general one given above.
r(n) = ((2*n-1)^2/(4*n))*r(n-1) + 2*c(n)/(n*(2*n-1)), n >= 1, r(0) = 0, with c(n) = c(1/2,1/2;n) = ((2*n)!)^2 / (n!^3*2^(4*n)) (see A274657/A123854).
E.g.f. for r(n) is Fricke's F_1(1/2,1/2;z).

A006934 A series for Pi.

Original entry on oeis.org

1, 1, 21, 671, 180323, 20898423, 7426362705, 1874409467055, 5099063967524835, 2246777786836681835, 2490122296790918386363, 1694873049836486741425113, 5559749161756484280905626951, 5406810236613380495234085140851, 12304442295910538475633061651918089
Offset: 0

Views

Author

Keywords

Comments

Formula (21) in Luke (see ref.): Let y = 4*n+1. Then for n -> oo
Pi ~ 4*(n!)^4*2^(4*n)/(y*((2*n)!)^2)*(sum_{k>=0}((-1)^k*y^(-2*k)* A006934(k)/A123854(k)))^2. (Luke does not reference the sequences in this form.) - Peter Luschny, Mar 23 2014
This might be related to the numerators of eq. (18) in N. Elezovic' "Asymptotic Expansions of Central Binomial...", J. Int. Seq. 17 (2014) # 14.2.1. - R. J. Mathar, Mar 23 2014
Several references give an erroneous value of 1874409465055 instead of a(7) in the formula for pi. - M. F. Hasler, Mar 23 2014

References

  • Y. L. Luke, The Special Functions and their Approximation, Vol. 1, Academic Press, NY, 1969, see p. 36.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A006934_list := proc(n) local k, f, bp;
    bp := proc(n,x) option remember; local k; if n = 0 then 1 else -x*add(binomial(n-1,2*k+1)*bernoulli(2*k+2)/(k+1)*bp(n-2*k-2,x), k=0..n/2-1) fi end:
    f := n -> 2^(3*n-add(i, i=convert(n,base,2)));
    add(bp(2*k,1/4)*binomial(4*k,2*k)*x^(2*k), k=0..n-1);
    seq((-1)^k*f(k)*coeff(%,x,2*k), k=0..n-1) end:
    A006934_list(15);  # Peter Luschny, Mar 23 2014
    # Second solution, without using Nörlund's generalized Bernoulli polynomials, based on Euler numbers:
    A006934_list := proc(n) local a,c,j;
    c := n -> 4^n/2^add(i, i=convert(n,base,2));
    a := [seq((-4)^j*euler(2*j)/(4*j), j=1..n)];
    expand(exp(add(a[j]*x^(-j), j=1..n))); taylor(%, x=infinity, n+2);
    subs(x=1/x, convert(%,polynom)): seq(c(iquo(j,2))*coeff(%,x,j), j=0..n) end:
    A006934_list(14); # Peter Luschny, Apr 08 2014
  • Mathematica
    A006934List[n_] := Module[{c, a, s, sx}, c[k_] := 4^k/2^Total[ IntegerDigits[k, 2]]; a = Table[(-4)^j EulerE[2j]/(4j), {j, 1, n}]; s[x_] = Series[Exp[Sum[a[[j]] x^(-j), {j, 1, n}]], {x, Infinity, n+2}] // Normal; sx = s[1/x]; Table[c[Quotient[j, 2]] Coefficient[sx, x, j], {j, 0, n}]];
    A006934List[14] (* Jean-François Alcover, Jun 02 2019, from second Maple program *)
  • Sage
    @CachedFunction
    def p(n):
        if n < 2: return 1
        return -add(binomial(n-1,k-1)*bernoulli(k)*p(n-k)/k for k in range(2,n+1,2))/2
    def A006934(n): return (-1)^n*p(2*n)*binomial(4*n,2*n)*2^(3*n-sum(n.digits(2)))
    [A006934(n) for n in (0..14)]  # Peter Luschny, Mar 24 2014

Formula

Let p(n,x) = sum(k=0..n, x^k*A220412(n,k))/A220411(n) then a(n) = (-1)^n*p(n,1/4)*A123854(n)*A001448(n). - Peter Luschny, Mar 23 2014
Pi = lim_{n->oo} 2^{4n+2}/((4n+1)*C(2n,n)^2)*(sum_{k=0..oo} (-1)^k*a(k)/(A123854(k)*(4n+1)^{2k}))^2. - M. F. Hasler, Mar 23 2014

Extensions

a(7) corrected, a(8)-a(14) from Peter Luschny, Mar 23 2014

A348678 Triangle read by rows, T(n, k) = denominator([x^k] M(n, x)) where M(n,x) are the Mandelbrot-Larsen polynomials defined in A347928.

Original entry on oeis.org

1, 1, 2, 1, 4, 8, 1, 1, 8, 16, 1, 8, 32, 32, 128, 1, 1, 16, 64, 64, 256, 1, 1, 32, 128, 256, 512, 1024, 1, 1, 1, 64, 256, 512, 1024, 2048, 1, 16, 128, 256, 2048, 64, 4096, 4096, 32768, 1, 1, 32, 256, 512, 4096, 1024, 8192, 8192, 65536
Offset: 0

Views

Author

Peter Luschny, Oct 29 2021

Keywords

Examples

			Triangle starts:
[0] 1
[1] 1,  2
[2] 1,  4,   8
[3] 1,  1,   8,  16
[4] 1,  8,  32,  32,  128
[5] 1,  1,  16,  64,   64,  256
[6] 1,  1,  32, 128,  256,  512, 1024
[7] 1,  1,   1,  64,  256,  512, 1024, 2048
[8] 1, 16, 128, 256, 2048,   64, 4096, 4096, 32768
[9] 1,  1,  32, 256,  512, 4096, 1024, 8192,  8192, 65536
		

Crossrefs

T(n, n) = A046161(n).
Cf. A348679 (numerators), A347928, A088802 & A123854 (central elements).

Programs

  • Maple
    # Polynomials M are defined in A347928.
    T := (n, k) -> denom(coeff(M(n, x), x, k)):
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;

A364660 Numerators of coefficients in expansion of (1 + x)^(1/4).

Original entry on oeis.org

1, 1, -3, 7, -77, 231, -1463, 4807, -129789, 447051, -3129357, 11094993, -159028233, 574948227, -4188908511, 15359331207, -906200541213, 3358272593907, -25000473754641, 93422822977869, -1401342344668035, 5271716439465465, -39777496770512145, 150462705175415505, -4564035390320936985
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 01 2023

Keywords

Examples

			(1 + x)^(1/4) = 1 + x/4 - 3*x^2/32 + 7*x^3/128 - 77*x^4/2048 + 231*x^5/8192 - 1463*x^6/65536 + ...
Coefficients are 1, 1/4, -3/32, 7/128, -77/2048, 231/8192, -1463/65536, ...
		

Crossrefs

Denominators are A088802, A123854.

Programs

  • Mathematica
    nmax = 24; CoefficientList[Series[(1 + x)^(1/4), {x, 0, nmax}], x] // Numerator
    Table[Binomial[1/4, n], {n, 0, 24}] // Numerator
  • PARI
    my(x='x+O('x^30)); apply(numerator, Vec((1 + x)^(1/4))) \\ Michel Marcus, Aug 02 2023

A364661 Numerators of coefficients in expansion of (1 + x)^(3/4).

Original entry on oeis.org

1, 3, -3, 5, -45, 117, -663, 1989, -49725, 160225, -1057485, 3556995, -48612265, 168273225, -1177912575, 4161957765, -237231592605, 851242773465, -6147864475025, 22326455198775, -325966245902115, 1195209568307755, -8801088639357105, 32525762362841475, -964930950097630425
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 01 2023

Keywords

Examples

			(1 + x)^(3/4) = 1 + 3*x/4 - 3*x^2/32 + 5*x^3/128 - 45*x^4/2048 + 117*x^5/8192 - 663*x^6/65536 + ...
Coefficients are 1, 3/4, -3/32, 5/128, -45/2048, 117/8192, -663/65536, ...
		

Crossrefs

Denominators are A088802, A123854.

Programs

  • Mathematica
    nmax = 24; CoefficientList[Series[(1 + x)^(3/4), {x, 0, nmax}], x] // Numerator
    Table[Binomial[3/4, n], {n, 0, 24}] // Numerator
  • PARI
    my(x='x+O('x^30)); apply(numerator, Vec((1 + x)^(3/4))) \\ Michel Marcus, Aug 02 2023

A274657 Numerators of the coefficients of z^n/n! for the expansion of hypergeometric([1/2,1/2],[1];z).

Original entry on oeis.org

1, 1, 9, 75, 3675, 59535, 2401245, 57972915, 13043905875, 418854310875, 30241281245175, 1212400457192925, 213786613951685775, 10278202593831046875, 1070401384414690453125, 60013837619516978071875, 57673297952355815927071875, 3694483615889146090857721875
Offset: 0

Views

Author

Wolfdieter Lang, Jul 07 2016

Keywords

Comments

The denominators are given in A123854.
The main entry is A038534 (with A056982) where comments and references are given.
The complete elliptic integral of the first kind K = K(k) is (Pi/2)*hypergeometric([1/2,1/2],[1];k^2). This is also the real quarter period K of elliptic functions.

Examples

			The first rationals r(n) are: 1, 1/4, 9/32, 75/128, 3675/2048, 59535/8192, 2401245/65536, 57972915/262144, 13043905875/8388608, 418854310875/33554432, 30241281245175/268435456, ...
		

Crossrefs

Programs

  • Mathematica
    With[{n = 20}, Numerator[CoefficientList[Series[2 EllipticK[x]/Pi, {x, 0, n}], x] Range[0, n]!]] (* Jan Mangaldan, Jan 04 2017 *)
    Numerator[Table[Gamma[n + 1/2]^2/(Pi Gamma[n + 1]), {n, 0, 20}]] (* Li Han, Feb 05 2021 *)

Formula

a(n) = numerator(r(n)) with the rationals (in lowest terms) r(n) = (risefac(1/2,n)^2)/n! = ((2*n)!^2)/((n!^3)*2^(4*n)), with the rising factorial risefac (Pochhammer symbol).
E.g.f. for r(n) is hypergeometric([1/2,1/2],[1];z).

A292754 Numerators of coefficients in an asymptotic expansion of the Wallis sequence in inverse powers of n.

Original entry on oeis.org

1, -1, 5, -11, 83, -143, 625, -1843, 24323, 61477, -14165, -8084893, 31181719, 1682401061, -3166220215, -251783137859, 3865962456803, 394670372519917, -765052915887545, -98394908192751193, 384080734825119709, 60838795345430052431, -119312155199695296505, -22845758944383820991909
Offset: 0

Views

Author

N. J. A. Sloane, Sep 25 2017

Keywords

References

  • Chao-Ping Chen, Richard B. Paris, On the asymptotic expansions of products related to the Wallis, Weierstrass, and Wilf formulas, Applied Mathematics and Computation 293 (2017) 30-39. See (3.12).

Crossrefs

Cf. A088802 or A123854 (denominators).

Programs

  • Mathematica
    nu[j_] := (-1)^(j+1) ((4 - 2^(1-j)) BernoulliB[j+1] - (j+1) 2^(-j))/(j*(j + 1)); mu[j_] := mu[j] = If[j == 0, 1, Sum[k nu[k] mu[j-k], {k, j}]/j]; Table[Numerator@mu@n, {n, 0, 23}] (* Giovanni Resta, May 29 2019 *)
    Numerator[CoefficientList[Series[16^n/(Pi*(2*n + 1) * Binomial[2*n, n]^2), {n, Infinity, 20}], 1/n]] (* Vaclav Kotesovec, Jun 02 2019 *)
  • PARI
    nu(j) = (-1)^(j+1)*((4-2^(1-j))*bernfrac(j+1) - (j+1)*2^(-j))/(j*(j+1));
    mu(j) = if (j==0, 1, sum(k=1, j, k*nu(k)*mu(j-k))/j);
    a(n) = numerator(mu(n)); \\ Michel Marcus, May 29 2019

Formula

See (3.8) and (3.11) in Chen link.

Extensions

More terms from Michel Marcus, May 29 2019

A344910 T(n, k) = denominator([x^k] [z^n] ((1 - i*z)/(1 + i*z))^(i*x)*(1 + z^2)^(-3/4)). Denominators of the coefficients of the symmetric Meixner-Pollaczek polynomials P^(3/4)_{n}(x, Pi/2). Triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 6, 1, 3, 32, 1, 6, 1, 3, 1, 80, 1, 3, 1, 15, 128, 1, 720, 1, 18, 1, 45, 1, 2240, 1, 360, 1, 45, 1, 315, 2048, 1, 6720, 1, 720, 1, 45, 1, 315, 1, 322560, 1, 90720, 1, 1080, 1, 945, 1, 2835, 8192, 1, 1612800, 1, 181440, 1, 5400, 1, 1890, 1, 14175
Offset: 0

Views

Author

Peter Luschny, Jul 08 2021

Keywords

Examples

			Triangle starts:
  [0] 1;
  [1] 1, 1;
  [2] 4, 1, 1;
  [3] 1, 6, 1, 3;
  [4] 32, 1, 6, 1, 3;
  [5] 1, 80, 1, 3, 1, 15;
  [6] 128, 1, 720, 1, 18, 1, 45;
  [7] 1, 2240, 1, 360, 1, 45, 1, 315;
  [8] 2048, 1, 6720, 1, 720, 1, 45, 1, 315;
  [9] 1, 322560, 1, 90720, 1, 1080, 1, 945, 1, 2835.
		

Crossrefs

Cf. A344909 (numerators).
Cf. A088802 and A123854 (denominator(binomial(1/4, n))) for column 0.
Cf. A049606 (numerator(n!/2^n)) for column n.

Programs

  • Maple
    gf := ((1 - I*z)/(1 + I*z))^(I*x)*(1 + z^2)^(-3/4):
    serz := series(gf, z, 22): coeffz := n -> coeff(serz, z, n):
    row := n -> seq(denom(coeff(coeffz(n), x, k)), k = 0..n):
    seq(row(n), n = 0..10);
    # Alternative:
    CoeffList := p -> denom(PolynomialTools:-CoefficientList(p, x)):
    P := proc(n) option remember; if n = 0 then 1 elif n = 1 then 2*x else
    expand((1/n)*(2*x*P(n - 1, x) - (n - 1/2)*P(n - 2, x))) fi end:
    ListTools:-Flatten([seq(CoeffList(P(n)), n = 0..10)]);
  • Mathematica
    ForceSimpl[a_] := Collect[Expand[Simplify[FunctionExpand[a]]], x]
    f[n_] := I^n Sum[(-1)^k Binomial[-3/4 + I*x, k] Binomial[-3/4 - I*x, n-k], {k, 0, n}] // ForceSimpl;
    row[n_] := CoefficientList[f[n], x] // Denominator;
    Table[row[n], {n, 0, 10}] // Flatten

Formula

T(n, k) = denominator([x^k] P(n, x), where P(n, x) = i^n*Sum_{k=0..n} (-1)^k* binomial(-3/4 + i*x, k)*binomial(-3/4 - i*x, n - k). The polynomials have the recurrence P(n, x) = (1/n)*(2*x*P(n - 1, x) - (n - 1/2)*P(n - 2, x))), starting with P(0, x) = 1 and P(1, x) = 2*x.
Previous Showing 11-18 of 18 results.