A274653
Numerators of coefficients of z^n/n! for the expansion of Fricke's hypergeometric function F_1(1/2,1/2;z).
Original entry on oeis.org
0, 1, 21, 185, 18655, 307503, 12548151, 305496477, 138343008375, 4464248592375, 323592065474535, 13015087974100485, 2301190559547593805, 110887163426713235625, 11570760017278599886875, 649837647729572203369125, 1250848387902442801195686375, 80233244659365977333374518375
Offset: 0
The sequence of rationals {r(n)} begins:
0, 1/2, 21/32, 185/128, 18655/4096, 307503/16384, 12548151/131072, 305496477/524288, 138343008375/33554432, 4464248592375/134217728, 323592065474535/1073741824, ....
The expansion of F_1(1/2,1/2;z) begins:
(1/2)*z + (21/32)*z^2/2! + (185/128)*z^3/3! + (18655/4096)*z^4/4! + (307503/16384)*z^5/5! + ..., or
(1/2)*z + (21/64)*z^2 + (185/768)*z^3 + (18655/98304)*z^4 + (102501/655360)*z^5 + ...
- R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Erster Teil, Springer-Verlag, 2012, p. 465, eq. (11) with p.114, eq. (15).
- R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Dritter Teil, Springer-Verlag, 2012, p. 2, eq. (3).
A006934
A series for Pi.
Original entry on oeis.org
1, 1, 21, 671, 180323, 20898423, 7426362705, 1874409467055, 5099063967524835, 2246777786836681835, 2490122296790918386363, 1694873049836486741425113, 5559749161756484280905626951, 5406810236613380495234085140851, 12304442295910538475633061651918089
Offset: 0
- Y. L. Luke, The Special Functions and their Approximation, Vol. 1, Academic Press, NY, 1969, see p. 36.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- J. L. Fields, A note on the asymptotic expansion of a ratio of gamma functions, Proc. Edinburgh Math. Soc. (15), 43-45, 1966.
- A. Gil, J. Segura, N. M. Temme, Fast and accurate computation of the Weber parabolic cylinder function W(a,x), IMA J. Num. Anal. 31 (2011), 1194-1216, eq (3.8).
- A. Lupas, Re: Pi Calculation ?, on mathforum.org, Feb 15 2003.
- C. Mortici, On some accurate estimates of pi, Bull. Math. Anal. Appl. 2(4) (2010) 137-139. (Formula (1.5), same typo as in Luke)
- Index entries for sequences related to the number Pi
-
A006934_list := proc(n) local k, f, bp;
bp := proc(n,x) option remember; local k; if n = 0 then 1 else -x*add(binomial(n-1,2*k+1)*bernoulli(2*k+2)/(k+1)*bp(n-2*k-2,x), k=0..n/2-1) fi end:
f := n -> 2^(3*n-add(i, i=convert(n,base,2)));
add(bp(2*k,1/4)*binomial(4*k,2*k)*x^(2*k), k=0..n-1);
seq((-1)^k*f(k)*coeff(%,x,2*k), k=0..n-1) end:
A006934_list(15); # Peter Luschny, Mar 23 2014
# Second solution, without using Nörlund's generalized Bernoulli polynomials, based on Euler numbers:
A006934_list := proc(n) local a,c,j;
c := n -> 4^n/2^add(i, i=convert(n,base,2));
a := [seq((-4)^j*euler(2*j)/(4*j), j=1..n)];
expand(exp(add(a[j]*x^(-j), j=1..n))); taylor(%, x=infinity, n+2);
subs(x=1/x, convert(%,polynom)): seq(c(iquo(j,2))*coeff(%,x,j), j=0..n) end:
A006934_list(14); # Peter Luschny, Apr 08 2014
-
A006934List[n_] := Module[{c, a, s, sx}, c[k_] := 4^k/2^Total[ IntegerDigits[k, 2]]; a = Table[(-4)^j EulerE[2j]/(4j), {j, 1, n}]; s[x_] = Series[Exp[Sum[a[[j]] x^(-j), {j, 1, n}]], {x, Infinity, n+2}] // Normal; sx = s[1/x]; Table[c[Quotient[j, 2]] Coefficient[sx, x, j], {j, 0, n}]];
A006934List[14] (* Jean-François Alcover, Jun 02 2019, from second Maple program *)
-
@CachedFunction
def p(n):
if n < 2: return 1
return -add(binomial(n-1,k-1)*bernoulli(k)*p(n-k)/k for k in range(2,n+1,2))/2
def A006934(n): return (-1)^n*p(2*n)*binomial(4*n,2*n)*2^(3*n-sum(n.digits(2)))
[A006934(n) for n in (0..14)] # Peter Luschny, Mar 24 2014
A348678
Triangle read by rows, T(n, k) = denominator([x^k] M(n, x)) where M(n,x) are the Mandelbrot-Larsen polynomials defined in A347928.
Original entry on oeis.org
1, 1, 2, 1, 4, 8, 1, 1, 8, 16, 1, 8, 32, 32, 128, 1, 1, 16, 64, 64, 256, 1, 1, 32, 128, 256, 512, 1024, 1, 1, 1, 64, 256, 512, 1024, 2048, 1, 16, 128, 256, 2048, 64, 4096, 4096, 32768, 1, 1, 32, 256, 512, 4096, 1024, 8192, 8192, 65536
Offset: 0
Triangle starts:
[0] 1
[1] 1, 2
[2] 1, 4, 8
[3] 1, 1, 8, 16
[4] 1, 8, 32, 32, 128
[5] 1, 1, 16, 64, 64, 256
[6] 1, 1, 32, 128, 256, 512, 1024
[7] 1, 1, 1, 64, 256, 512, 1024, 2048
[8] 1, 16, 128, 256, 2048, 64, 4096, 4096, 32768
[9] 1, 1, 32, 256, 512, 4096, 1024, 8192, 8192, 65536
- Neil J. Calkin, Eunice Y. S. Chan, and Robert M. Corless, Some Facts and Conjectures about Mandelbrot Polynomials, Maple Trans., Vol. 1, No. 1, Article 14037 (July 2021).
- Michael Larsen, Multiplicative series, modular forms, and Mandelbrot polynomials, in: Mathematics of Computation 90.327 (Sept. 2020), pp. 345-377. Preprint: arXiv:1908.09974 [math.NT], 2019.
-
# Polynomials M are defined in A347928.
T := (n, k) -> denom(coeff(M(n, x), x, k)):
for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
A364660
Numerators of coefficients in expansion of (1 + x)^(1/4).
Original entry on oeis.org
1, 1, -3, 7, -77, 231, -1463, 4807, -129789, 447051, -3129357, 11094993, -159028233, 574948227, -4188908511, 15359331207, -906200541213, 3358272593907, -25000473754641, 93422822977869, -1401342344668035, 5271716439465465, -39777496770512145, 150462705175415505, -4564035390320936985
Offset: 0
(1 + x)^(1/4) = 1 + x/4 - 3*x^2/32 + 7*x^3/128 - 77*x^4/2048 + 231*x^5/8192 - 1463*x^6/65536 + ...
Coefficients are 1, 1/4, -3/32, 7/128, -77/2048, 231/8192, -1463/65536, ...
-
nmax = 24; CoefficientList[Series[(1 + x)^(1/4), {x, 0, nmax}], x] // Numerator
Table[Binomial[1/4, n], {n, 0, 24}] // Numerator
-
my(x='x+O('x^30)); apply(numerator, Vec((1 + x)^(1/4))) \\ Michel Marcus, Aug 02 2023
A364661
Numerators of coefficients in expansion of (1 + x)^(3/4).
Original entry on oeis.org
1, 3, -3, 5, -45, 117, -663, 1989, -49725, 160225, -1057485, 3556995, -48612265, 168273225, -1177912575, 4161957765, -237231592605, 851242773465, -6147864475025, 22326455198775, -325966245902115, 1195209568307755, -8801088639357105, 32525762362841475, -964930950097630425
Offset: 0
(1 + x)^(3/4) = 1 + 3*x/4 - 3*x^2/32 + 5*x^3/128 - 45*x^4/2048 + 117*x^5/8192 - 663*x^6/65536 + ...
Coefficients are 1, 3/4, -3/32, 5/128, -45/2048, 117/8192, -663/65536, ...
-
nmax = 24; CoefficientList[Series[(1 + x)^(3/4), {x, 0, nmax}], x] // Numerator
Table[Binomial[3/4, n], {n, 0, 24}] // Numerator
-
my(x='x+O('x^30)); apply(numerator, Vec((1 + x)^(3/4))) \\ Michel Marcus, Aug 02 2023
A274657
Numerators of the coefficients of z^n/n! for the expansion of hypergeometric([1/2,1/2],[1];z).
Original entry on oeis.org
1, 1, 9, 75, 3675, 59535, 2401245, 57972915, 13043905875, 418854310875, 30241281245175, 1212400457192925, 213786613951685775, 10278202593831046875, 1070401384414690453125, 60013837619516978071875, 57673297952355815927071875, 3694483615889146090857721875
Offset: 0
The first rationals r(n) are: 1, 1/4, 9/32, 75/128, 3675/2048, 59535/8192, 2401245/65536, 57972915/262144, 13043905875/8388608, 418854310875/33554432, 30241281245175/268435456, ...
-
With[{n = 20}, Numerator[CoefficientList[Series[2 EllipticK[x]/Pi, {x, 0, n}], x] Range[0, n]!]] (* Jan Mangaldan, Jan 04 2017 *)
Numerator[Table[Gamma[n + 1/2]^2/(Pi Gamma[n + 1]), {n, 0, 20}]] (* Li Han, Feb 05 2021 *)
A292754
Numerators of coefficients in an asymptotic expansion of the Wallis sequence in inverse powers of n.
Original entry on oeis.org
1, -1, 5, -11, 83, -143, 625, -1843, 24323, 61477, -14165, -8084893, 31181719, 1682401061, -3166220215, -251783137859, 3865962456803, 394670372519917, -765052915887545, -98394908192751193, 384080734825119709, 60838795345430052431, -119312155199695296505, -22845758944383820991909
Offset: 0
- Chao-Ping Chen, Richard B. Paris, On the asymptotic expansions of products related to the Wallis, Weierstrass, and Wilf formulas, Applied Mathematics and Computation 293 (2017) 30-39. See (3.12).
-
nu[j_] := (-1)^(j+1) ((4 - 2^(1-j)) BernoulliB[j+1] - (j+1) 2^(-j))/(j*(j + 1)); mu[j_] := mu[j] = If[j == 0, 1, Sum[k nu[k] mu[j-k], {k, j}]/j]; Table[Numerator@mu@n, {n, 0, 23}] (* Giovanni Resta, May 29 2019 *)
Numerator[CoefficientList[Series[16^n/(Pi*(2*n + 1) * Binomial[2*n, n]^2), {n, Infinity, 20}], 1/n]] (* Vaclav Kotesovec, Jun 02 2019 *)
-
nu(j) = (-1)^(j+1)*((4-2^(1-j))*bernfrac(j+1) - (j+1)*2^(-j))/(j*(j+1));
mu(j) = if (j==0, 1, sum(k=1, j, k*nu(k)*mu(j-k))/j);
a(n) = numerator(mu(n)); \\ Michel Marcus, May 29 2019
A344910
T(n, k) = denominator([x^k] [z^n] ((1 - i*z)/(1 + i*z))^(i*x)*(1 + z^2)^(-3/4)). Denominators of the coefficients of the symmetric Meixner-Pollaczek polynomials P^(3/4)_{n}(x, Pi/2). Triangle read by rows, T(n, k) for 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 4, 1, 1, 1, 6, 1, 3, 32, 1, 6, 1, 3, 1, 80, 1, 3, 1, 15, 128, 1, 720, 1, 18, 1, 45, 1, 2240, 1, 360, 1, 45, 1, 315, 2048, 1, 6720, 1, 720, 1, 45, 1, 315, 1, 322560, 1, 90720, 1, 1080, 1, 945, 1, 2835, 8192, 1, 1612800, 1, 181440, 1, 5400, 1, 1890, 1, 14175
Offset: 0
Triangle starts:
[0] 1;
[1] 1, 1;
[2] 4, 1, 1;
[3] 1, 6, 1, 3;
[4] 32, 1, 6, 1, 3;
[5] 1, 80, 1, 3, 1, 15;
[6] 128, 1, 720, 1, 18, 1, 45;
[7] 1, 2240, 1, 360, 1, 45, 1, 315;
[8] 2048, 1, 6720, 1, 720, 1, 45, 1, 315;
[9] 1, 322560, 1, 90720, 1, 1080, 1, 945, 1, 2835.
Cf.
A049606 (numerator(n!/2^n)) for column n.
-
gf := ((1 - I*z)/(1 + I*z))^(I*x)*(1 + z^2)^(-3/4):
serz := series(gf, z, 22): coeffz := n -> coeff(serz, z, n):
row := n -> seq(denom(coeff(coeffz(n), x, k)), k = 0..n):
seq(row(n), n = 0..10);
# Alternative:
CoeffList := p -> denom(PolynomialTools:-CoefficientList(p, x)):
P := proc(n) option remember; if n = 0 then 1 elif n = 1 then 2*x else
expand((1/n)*(2*x*P(n - 1, x) - (n - 1/2)*P(n - 2, x))) fi end:
ListTools:-Flatten([seq(CoeffList(P(n)), n = 0..10)]);
-
ForceSimpl[a_] := Collect[Expand[Simplify[FunctionExpand[a]]], x]
f[n_] := I^n Sum[(-1)^k Binomial[-3/4 + I*x, k] Binomial[-3/4 - I*x, n-k], {k, 0, n}] // ForceSimpl;
row[n_] := CoefficientList[f[n], x] // Denominator;
Table[row[n], {n, 0, 10}] // Flatten
Comments