cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A363950 Numbers whose prime indices have rounded-up mean 2.

Original entry on oeis.org

3, 6, 9, 10, 12, 18, 20, 24, 27, 28, 30, 36, 40, 48, 54, 56, 60, 72, 80, 81, 84, 88, 90, 96, 100, 108, 112, 120, 144, 160, 162, 168, 176, 180, 192, 200, 208, 216, 224, 240, 243, 252, 264, 270, 280, 288, 300, 320, 324, 336, 352, 360, 384, 400, 416, 432, 448
Offset: 1

Views

Author

Gus Wiseman, Jul 05 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
     3: {2}
     6: {1,2}
     9: {2,2}
    10: {1,3}
    12: {1,1,2}
    18: {1,2,2}
    20: {1,1,3}
    24: {1,1,1,2}
    27: {2,2,2}
    28: {1,1,4}
    30: {1,2,3}
    36: {1,1,2,2}
    40: {1,1,1,3}
    48: {1,1,1,1,2}
    54: {1,2,2,2}
    56: {1,1,1,4}
    60: {1,1,2,3}
    72: {1,1,1,2,2}
    80: {1,1,1,1,3}
    81: {2,2,2,2}
		

Crossrefs

For mean 1 we have A000079 except 1.
Partitions of this type are counted by A026905 redoubled.
Equals the complement of A000079 in A344296.
Positions of 2's in A363944 (counted by column 2 of A363946).
For rounded mean 1 we have A363948, counted by A363947.
For rounded-down mean 1 we have A363949, counted by A025065.
The rounded-down or low version is A363954, counted by A363745.
A316413 ranks partitions with integer mean, counted by A067538.
A112798 lists prime indices, length A001222, sum A056239.
A326567/A326568 gives mean of prime indices.
A363941 gives low median of prime indices, triangle A124943.
A363942 gives high median of prime indices, triangle A124944.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Ceiling[Mean[prix[#]]]==2&]

A363488 Even numbers whose prime factorization has at least as many 2's as non-2's.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 14, 16, 20, 22, 24, 26, 28, 32, 34, 36, 38, 40, 44, 46, 48, 52, 56, 58, 60, 62, 64, 68, 72, 74, 76, 80, 82, 84, 86, 88, 92, 94, 96, 100, 104, 106, 112, 116, 118, 120, 122, 124, 128, 132, 134, 136, 140, 142, 144, 146, 148, 152, 156, 158, 160
Offset: 1

Views

Author

Gus Wiseman, Jul 06 2023

Keywords

Comments

The multiset of prime factors of n is row n of A027746.
Also numbers whose prime factors have low median 2, where the low median (see A124943) is either the middle part (for odd length), or the least of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
     2: {1}            34: {1,7}             72: {1,1,1,2,2}
     4: {1,1}          36: {1,1,2,2}         74: {1,12}
     6: {1,2}          38: {1,8}             76: {1,1,8}
     8: {1,1,1}        40: {1,1,1,3}         80: {1,1,1,1,3}
    10: {1,3}          44: {1,1,5}           82: {1,13}
    12: {1,1,2}        46: {1,9}             84: {1,1,2,4}
    14: {1,4}          48: {1,1,1,1,2}       86: {1,14}
    16: {1,1,1,1}      52: {1,1,6}           88: {1,1,1,5}
    20: {1,1,3}        56: {1,1,1,4}         92: {1,1,9}
    22: {1,5}          58: {1,10}            94: {1,15}
    24: {1,1,1,2}      60: {1,1,2,3}         96: {1,1,1,1,1,2}
    26: {1,6}          62: {1,11}           100: {1,1,3,3}
    28: {1,1,4}        64: {1,1,1,1,1,1}    104: {1,1,1,6}
    32: {1,1,1,1,1}    68: {1,1,7}          106: {1,16}
		

Crossrefs

Partitions of this type are counted by A027336.
The case without high median > 1 is A072978.
For mode instead of median we have A360015, high A360013.
Positions of 1's in A363941.
For mean instead of median we have A363949, high A000079.
The high version is A364056, positions of 1's in A363942.
A067538 counts partitions with integer mean, ranks A316413.
A112798 lists prime indices, length A001222, sum A056239.
A124943 counts partitions by low median, high A124944.
A363943 gives low mean of prime indices, triangle A363945.

Programs

  • Mathematica
    Select[Range[100],EvenQ[#]&&PrimeOmega[#]<=2*FactorInteger[#][[1,2]]&]

A363952 Number of integer partitions of n with low mode k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 3, 1, 0, 1, 0, 4, 2, 0, 0, 1, 0, 7, 2, 1, 0, 0, 1, 0, 9, 3, 2, 0, 0, 0, 1, 0, 13, 5, 2, 1, 0, 0, 0, 1, 0, 18, 6, 3, 2, 0, 0, 0, 0, 1, 0, 26, 9, 3, 2, 1, 0, 0, 0, 0, 1, 0, 32, 13, 5, 3, 2, 0, 0, 0, 0, 0, 1, 0, 47, 16, 7, 3, 2, 1, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 07 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.
Extending the terminology of A124943, the "low mode" of a multiset is the least mode.

Examples

			Triangle begins:
   1
   0   1
   0   1   1
   0   2   0   1
   0   3   1   0   1
   0   4   2   0   0   1
   0   7   2   1   0   0   1
   0   9   3   2   0   0   0   1
   0  13   5   2   1   0   0   0   1
   0  18   6   3   2   0   0   0   0   1
   0  26   9   3   2   1   0   0   0   0   1
   0  32  13   5   3   2   0   0   0   0   0   1
   0  47  16   7   3   2   1   0   0   0   0   0   1
   0  60  21  10   4   3   2   0   0   0   0   0   0   1
   0  79  30  13   6   3   2   1   0   0   0   0   0   0   1
   0 104  38  17   7   4   3   2   0   0   0   0   0   0   0   1
Row n = 8 counts the following partitions:
  .  (71)        (62)     (53)   (44)  .  .  .  (8)
     (611)       (422)    (332)
     (521)       (3221)
     (5111)      (2222)
     (431)       (22211)
     (4211)
     (41111)
     (3311)
     (32111)
     (311111)
     (221111)
     (2111111)
     (11111111)
		

Crossrefs

Row sums are A000041.
For median: A124943 (high A124944), rank statistic A363941 (high A363942).
Column k = 1 is A241131 (partitions w/ low mode 1), ranks A360015, A360013.
The rank statistic for this triangle is A363486.
For mean: A363945 (high A363946), rank statistic A363943 (high A363944).
The high version is A363953.
A008284 counts partitions by length, A058398 by mean.
A362612 counts partitions (max part) = (unique mode), ranks A362616.
A362614 counts partitions by number of modes, rank statistic A362611.
A362615 counts partitions by number of co-modes, rank statistic A362613.

Programs

  • Mathematica
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n], If[Length[#]==0,0,First[modes[#]]]==k&]],{n,0,15},{k,0,n}]

A363951 Numbers whose prime indices satisfy (length) = (mean), or (sum) = (length)^2.

Original entry on oeis.org

2, 9, 10, 68, 78, 98, 99, 105, 110, 125, 328, 444, 558, 620, 783, 812, 870, 966, 988, 1012, 1035, 1150, 1156, 1168, 1197, 1254, 1326, 1330, 1425, 1521, 1666, 1683, 1690, 1704, 1785, 1870, 1911, 2002, 2125, 2145, 2275, 2401, 2412, 2541, 2662, 2680, 2695, 3025
Offset: 1

Views

Author

Gus Wiseman, Jul 05 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
    2: {1}
    9: {2,2}
   10: {1,3}
   68: {1,1,7}
   78: {1,2,6}
   98: {1,4,4}
   99: {2,2,5}
  105: {2,3,4}
  110: {1,3,5}
  125: {3,3,3}
  328: {1,1,1,13}
  444: {1,1,2,12}
  558: {1,2,2,11}
  620: {1,1,3,11}
  783: {2,2,2,10}
  812: {1,1,4,10}
  870: {1,2,3,10}
  966: {1,2,4,9}
  988: {1,1,6,8}
		

Crossrefs

Partitions of this type are counted by A364055, without zeros A206240.
The RHS is A001222.
The LHS is A326567/A326568.
A008284 counts partitions by length, A058398 by mean.
A088529/A088530 gives mean of prime signature A124010.
A112798 lists prime indices, sum A056239.
A124943 counts partitions by low median, high A124944.
A316413 ranks partitions with integer mean, counted by A067538.
A326622 counts factorizations with integer mean, strict A328966.
A363950 ranks partitions with low mean 2, counted by A026905 redoubled.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Mean[prix[#]]==PrimeOmega[#]&]

A363953 Number of integer partitions of n with high mode k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 0, 3, 1, 1, 1, 1, 0, 4, 2, 2, 1, 1, 1, 0, 7, 2, 1, 2, 1, 1, 1, 0, 9, 4, 2, 2, 2, 1, 1, 1, 0, 13, 6, 2, 2, 2, 2, 1, 1, 1, 0, 18, 7, 4, 3, 3, 2, 2, 1, 1, 1, 0, 26, 10, 5, 2, 3, 3, 2, 2, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 07 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.
Extending the terminology of A124944, the "high mode" in a multiset is the greatest mode.

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  1  1  1
  0  2  1  1  1
  0  3  1  1  1  1
  0  4  2  2  1  1  1
  0  7  2  1  2  1  1  1
  0  9  4  2  2  2  1  1  1
  0 13  6  2  2  2  2  1  1  1
  0 18  7  4  3  3  2  2  1  1  1
  0 26 10  5  2  3  3  2  2  1  1  1
  0 32 15  8  4  4  4  3  2  2  1  1  1
  0 47 19  9  5  3  4  4  3  2  2  1  1  1
  0 60 26 13  7  5  5  5  4  3  2  2  1  1  1
  0 79 34 18 10  6  5  5  5  4  3  2  2  1  1  1
Row n = 9 counts the following partitions:
  .  (711)        (522)     (333)   (441)  (54)   (63)   (72)  (81)  (9)
     (6111)       (4221)    (3321)  (432)  (531)  (621)
     (5211)       (3222)
     (51111)      (32211)
     (4311)       (22221)
     (42111)      (222111)
     (411111)
     (33111)
     (321111)
     (3111111)
     (2211111)
     (21111111)
     (111111111)
		

Crossrefs

Row sums are A000041.
For median: A124944 (low A124943), rank statistic A363942 (low A363941).
Column k = 1 is A241131 (partitions w/ high mode 1), ranks A360013, A360015.
The rank statistic for this triangle is A363487, low A363486.
For mean: A363946 (low A363945), rank statistic A363944 (low A363943).
The low version is A363952.
A008284 counts partitions by length, A058398 by mean.
A362612 counts partitions (max part) = (unique mode), ranks A362616.
A362614 counts partitions by number of modes, rank statistic A362611.
A362615 counts partitions by number of co-modes, rank statistic A362613.

Programs

  • Mathematica
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n], If[Length[#]==0,0,Last[modes[#]]]==k&]],{n,0,15},{k,0,n}]

A364158 Numbers whose multiset of prime factors has low (i.e. least) co-mode 2.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 14, 16, 18, 22, 26, 30, 32, 34, 36, 38, 42, 46, 50, 54, 58, 62, 64, 66, 70, 74, 78, 82, 86, 90, 94, 98, 100, 102, 106, 108, 110, 114, 118, 122, 126, 128, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 190, 194
Offset: 1

Views

Author

Gus Wiseman, Jul 14 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a co-mode in a multiset to be an element that appears at most as many times as each of the others. For example, the co-modes in {a,a,b,b,b,c,c} are {a,c}.
Except for 1, this is the lists of all even numbers whose prime factorization contains at most as many 2's as non-2 parts.
Extending the terminology of A124943, the "low co-mode" of a multiset is the least co-mode.

Examples

			The terms together with their prime factorizations begin:
   1 =
   2 = 2
   4 = 2*2
   6 = 2*3
   8 = 2*2*2
  10 = 2*5
  14 = 2*7
  16 = 2*2*2*2
  18 = 2*3*3
  22 = 2*11
  26 = 2*13
  30 = 2*3*5
  32 = 2*2*2*2*2
  34 = 2*17
  36 = 2*2*3*3
		

Crossrefs

Partitions of this type are counted by A364159.
Positions of 1's in A364191, high A364192, modes A363486, high A363487.
For median we have A363488, positions of 1 in A363941, triangle A124943.
For mode instead of co-mode we have A360015, counted by A241131.
A027746 lists prime factors (with multiplicity), length A001222.
A362611 counts modes in prime factorization, triangle A362614
A362613 counts co-modes in prime factorization, triangle A362615
Ranking partitions:
- A356862: unique mode, counted by A362608
- A359178: unique co-mode, counted by A362610
- A362605: multiple modes, counted by A362607
- A362606: multiple co-modes, counted by A362609

Programs

  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
    comodes[ms_]:=Select[Union[ms],Count[ms,#]<=Min@@Length/@Split[ms]&];
    Select[Range[100],#==1||Min[comodes[prifacs[#]]]==2&]

A364159 Number of integer partitions of n - 1 containing fewer 1's than any other part.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 4, 5, 7, 9, 11, 15, 20, 23, 32, 40, 50, 61, 82, 95, 126, 149, 188, 228, 292, 337, 430, 510, 633, 748, 933, 1083, 1348, 1579, 1925, 2262, 2761, 3197, 3893, 4544, 5458, 6354, 7634, 8835, 10577, 12261, 14546, 16864, 19990, 23043, 27226, 31428
Offset: 0

Views

Author

Gus Wiseman, Jul 16 2023

Keywords

Comments

Also integer partitions of n with least co-mode 1. Here, we define a co-mode in a multiset to be an element that appears at most as many times as each of the others. For example, the co-modes in {a,a,b,b,b,c,c} are {a,c}.

Examples

			The a(1) = 1 through a(8) = 7 partitions:
  (1)  (11)  (21)   (31)    (41)     (51)      (61)       (71)
             (111)  (1111)  (221)    (321)     (331)      (431)
                            (11111)  (2211)    (421)      (521)
                                     (111111)  (2221)     (3221)
                                               (1111111)  (3311)
                                                          (22211)
                                                          (11111111)
		

Crossrefs

For mode instead of co-mode we have A241131, ranks A360015.
The case with only one 1 is A364062, ranks A364061.
Counts partitions ranked by A364158.
Counts positions of 1's in A364191, high A364192.
A362611 counts modes in prime factorization, triangle A362614.
A362613 counts co-modes in prime factorization, triangle A362615.
Ranking and counting partitions:
- A356862 = unique mode, counted by A362608
- A359178 = unique co-mode, counted by A362610
- A362605 = multiple modes, counted by A362607
- A362606 = multiple co-modes, counted by A362609

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n-1],Count[#,1]
    				

A364191 Low co-mode in the multiset of prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 4, 1, 2, 1, 5, 2, 6, 1, 2, 1, 7, 1, 8, 3, 2, 1, 9, 2, 3, 1, 2, 4, 10, 1, 11, 1, 2, 1, 3, 1, 12, 1, 2, 3, 13, 1, 14, 5, 3, 1, 15, 2, 4, 1, 2, 6, 16, 1, 3, 4, 2, 1, 17, 2, 18, 1, 4, 1, 3, 1, 19, 7, 2, 1, 20, 2, 21, 1, 2, 8, 4, 1, 22, 3, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a co-mode in a multiset to be an element that appears at most as many times as each of the others. For example, the co-modes in {a,a,b,b,b,c,c} are {a,c}.
Extending the terminology of A124943, the "low co-mode" in a multiset is the least co-mode.

Examples

			The prime indices of 2100 are {1,1,2,3,3,4}, with co-modes {2,4}, so a(2100) = 2.
		

Crossrefs

For prime factors instead of indices we have A067695, high A359612.
For mode instead of co-mode we have A363486, high A363487, triangle A363952.
For median instead of co-mode we have A363941, high A363942.
Positions of 1's are A364158, counted by A364159.
The high version is A364192 = positions of 1's in A364061.
A112798 lists prime indices, length A001222, sum A056239.
A362611 counts modes in prime indices, triangle A362614.
A362613 counts co-modes in prime indices, triangle A362615.
Ranking and counting partitions:
- A356862 = unique mode, counted by A362608
- A359178 = unique co-mode, counted by A362610
- A362605 = multiple modes, counted by A362607
- A362606 = multiple co-modes, counted by A362609

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    comodes[ms_]:=Select[Union[ms],Count[ms,#]<=Min@@Length/@Split[ms]&];
    Table[If[n==1,0,Min[comodes[prix[n]]]],{n,30}]

Formula

a(n) = A000720(A067695(n)).
A067695(n) = A000040(a(n)).

A364192 High (i.e., greatest) co-mode in the multiset of prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 4, 1, 2, 3, 5, 2, 6, 4, 3, 1, 7, 1, 8, 3, 4, 5, 9, 2, 3, 6, 2, 4, 10, 3, 11, 1, 5, 7, 4, 2, 12, 8, 6, 3, 13, 4, 14, 5, 3, 9, 15, 2, 4, 1, 7, 6, 16, 1, 5, 4, 8, 10, 17, 3, 18, 11, 4, 1, 6, 5, 19, 7, 9, 4, 20, 2, 21, 12, 2, 8, 5, 6, 22, 3, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a co-mode in a multiset to be an element that appears at most as many times as each of the others. For example, the co-modes in {a,a,b,b,b,c,c} are {a,c}.
Extending the terminology of A124943, the "high co-mode" in a multiset is the greatest co-mode.

Examples

			The prime indices of 2100 are {1,1,2,3,3,4}, with co-modes {2,4}, so a(2100) = 4.
		

Crossrefs

For prime factors instead of indices we have A359612, low A067695.
For mode instead of co-mode we have A363487 (triangle A363953), low A363486 (triangle A363952).
The version for median instead of co-mode is A363942, low A363941.
Positions of 1's are A364061, counted by A364062.
The low version is A364191, 1's at A364158 (counted by A364159).
A112798 lists prime indices, length A001222, sum A056239.
A362611 counts modes in prime indices, triangle A362614.
A362613 counts co-modes in prime indices, triangle A362615.
Ranking and counting partitions:
- A356862 = unique mode, counted by A362608
- A359178 = unique co-mode, counted by A362610
- A362605 = multiple modes, counted by A362607
- A362606 = multiple co-modes, counted by A362609

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    comodes[ms_]:=Select[Union[ms],Count[ms,#]<=Min@@Length/@Split[ms]&];
    Table[If[n==1,0,Max[comodes[prix[n]]]],{n,30}]

Formula

a(n) = A000720(A359612(n)).
A359612(n) = A000040(a(n)).

A364056 Numbers whose prime factors have high median 2. Numbers whose prime factors (with multiplicity) are mostly 2's.

Original entry on oeis.org

2, 4, 8, 12, 16, 20, 24, 28, 32, 40, 44, 48, 52, 56, 64, 68, 72, 76, 80, 88, 92, 96, 104, 112, 116, 120, 124, 128, 136, 144, 148, 152, 160, 164, 168, 172, 176, 184, 188, 192, 200, 208, 212, 224, 232, 236, 240, 244, 248, 256, 264, 268, 272, 280, 284, 288, 292
Offset: 1

Views

Author

Gus Wiseman, Jul 07 2023

Keywords

Comments

The multiset of prime factors of n is row n of A027746.
The high median (see A124944) in a multiset is either the middle part (for odd length), or the greatest of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
     2: {1}             64: {1,1,1,1,1,1}      136: {1,1,1,7}
     4: {1,1}           68: {1,1,7}            144: {1,1,1,1,2,2}
     8: {1,1,1}         72: {1,1,1,2,2}        148: {1,1,12}
    12: {1,1,2}         76: {1,1,8}            152: {1,1,1,8}
    16: {1,1,1,1}       80: {1,1,1,1,3}        160: {1,1,1,1,1,3}
    20: {1,1,3}         88: {1,1,1,5}          164: {1,1,13}
    24: {1,1,1,2}       92: {1,1,9}            168: {1,1,1,2,4}
    28: {1,1,4}         96: {1,1,1,1,1,2}      172: {1,1,14}
    32: {1,1,1,1,1}    104: {1,1,1,6}          176: {1,1,1,1,5}
    40: {1,1,1,3}      112: {1,1,1,1,4}        184: {1,1,1,9}
    44: {1,1,5}        116: {1,1,10}           188: {1,1,15}
    48: {1,1,1,1,2}    120: {1,1,1,2,3}        192: {1,1,1,1,1,1,2}
    52: {1,1,6}        124: {1,1,11}           200: {1,1,1,3,3}
    56: {1,1,1,4}      128: {1,1,1,1,1,1,1}    208: {1,1,1,1,6}
		

Crossrefs

Partitions of this type are counted by A027336.
Median of prime indices is A360005(n)/2.
For mode instead of median we have A360013, low A360015.
The low version is A363488, positions of 1's in A363941.
Positions of 1's in A363942.
A112798 lists prime indices, length A001222, sum A056239.
A123528/A123529 gives mean of prime factors, indices A326567/A326568.
A124943 counts partitions by low median, high A124944.

Programs

  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
    merr[y_]:=If[Length[y]==0,0,If[OddQ[Length[y]],y[[(Length[y]+1)/2]], y[[1+Length[y]/2]]]];
    Select[Range[100],merr[prifacs[#]]==2&]
Previous Showing 11-20 of 26 results. Next