cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 41 results. Next

A177913 Numbers k such that k^3 divides 13^(k^2) - 1.

Original entry on oeis.org

1, 2, 3, 4, 6, 10, 12, 14, 20, 28, 30, 34, 42, 60, 68, 70, 84, 102, 110, 114, 140, 170, 183, 204, 210, 220, 222, 228, 238, 330, 340, 366, 406, 420, 444, 476, 510, 570, 660, 714, 732, 770, 798, 812, 820, 876, 930, 942, 1010, 1020, 1110, 1140, 1190, 1218, 1428
Offset: 1

Views

Author

Alexander Adamchuk, May 14 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Select[Range[3000000], PowerMod[13, #^2, #^3] == 1 &]] (* Robert Price, Mar 31 2020 *)

A177915 Numbers k such that k^3 divides 15^(k^2) - 1.

Original entry on oeis.org

1, 2, 4, 7, 8, 14, 16, 28, 56, 68, 112, 136, 226, 272, 406, 452, 476, 812, 904, 952, 1582, 1624, 1808, 1904, 2056, 2758, 3164, 3248, 4112, 5516, 5956, 6328, 7684, 9316, 11032, 11912, 12656, 13804, 14392, 15368, 18632, 21512, 22064, 23824, 23954, 25144
Offset: 1

Views

Author

Alexander Adamchuk, May 14 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Select[Range[30000], PowerMod[15, #^2, #^3] == 1 &]] (* Robert Price, Apr 04 2020 *)

A177918 Numbers k such that k^3 divides 18^(k^2) - 1.

Original entry on oeis.org

1, 17, 343927, 1414961, 28626075991, 610559655569, 5417488064959
Offset: 1

Views

Author

Alexander Adamchuk, May 14 2010

Keywords

Comments

17 divides a(n) for n > 1.

Crossrefs

Cf. A128358 (k divides 18^k - 1), A128398 (k^2 divides 18^k - 1).

Programs

  • Mathematica
    Select[Range[350000], Mod[PowerMod[18, #^2, #^3] - 1, #^3] == 0 &] (* Julien Kluge, Sep 20 2016 *)

Extensions

Three more terms from Max Alekseyev, Oct 02 2010

A177919 Numbers k such that k^3 divides 19^(k^2) - 1.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 10, 12, 18, 20, 30, 36, 42, 60, 68, 78, 84, 90, 110, 126, 156, 180, 204, 210, 220, 222, 234, 252, 294, 330, 340, 362, 381, 390, 420, 438, 444, 468, 546, 588, 612, 630, 654, 660, 666, 724, 762, 780, 820, 876, 882, 930, 990, 1010, 1014, 1020
Offset: 1

Views

Author

Alexander Adamchuk, May 14 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Select[ Range[10^4], Mod[ PowerMod[ 19, #^2, #^3 ] - 1, #^3 ] == 0 &]

A128456 Quotients A128452(p+1)/p for prime p = A000040(n).

Original entry on oeis.org

2, 7, 311, 127, 23, 157, 7563707819165039903, 75368484119, 47, 9629, 311, 25679, 821, 758771382833029, 12409, 71233, 18438666190697, 2443783, 2939291, 71711, 352883, 181113265579, 167, 105199, 3881, 1314520253, 619, 20759, 117503, 1162660843
Offset: 1

Views

Author

Alexander Adamchuk, Mar 05 2007, Mar 09 2007

Keywords

Comments

a(n) coincides with A128357(n) from n = 2 up to n = 6.

Crossrefs

Formula

a(n) = A128452(A000040(n)+1)/A000040(n).
a(n) = A020639(((p+1)^p - 1)/p^2), i.e., the smallest prime factor of ((p+1)^p - 1)/p^2, where p = A000040(n).

Extensions

Terms a(14) onward from Max Alekseyev, May 05 2010

A128452 Least number k > n such that k^2 divides n^k - 1.

Original entry on oeis.org

4, 21, 6, 1555, 8, 889, 10, 111, 12, 253, 14, 2041, 16, 21, 18, 128583032925805678351, 20, 1432001198261, 22, 39, 24, 1081, 26, 55, 28, 171, 30, 279241, 32, 9641, 34, 1191, 36, 55, 38, 950123, 40, 1641, 42, 33661, 44, 32627169461820247, 46, 63, 48, 583223, 50
Offset: 3

Views

Author

Alexander Adamchuk, Mar 05 2007, Mar 09 2007

Keywords

Comments

For prime p, p divides a(p+1). Quotients a(p+1)/p for prime p = A000040(n) are listed in A128456(n) which coincides with A128357(n) for n from 2 to 6.
a(n) divides n^(n-1) - 1.

Crossrefs

Formula

a(2n-1) = 2n.

Extensions

More terms from Alexander Adamchuk, Mar 09 2007
Terms a(22) onward from Max Alekseyev, May 05 2010

A333500 A(n,k) is the n-th number m such that m^2 divides k^m - 1 (or 0 if m does not exist); square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 0, 3, 1, 2, 0, 4, 1, 3, 4, 0, 5, 1, 2, 21, 20, 0, 6, 1, 5, 4, 903, 220, 0, 7, 1, 2, 1555, 6, 2667, 1220, 0, 8, 1, 7, 3, 9673655, 12, 7077, 2420, 0, 9, 1, 2, 889, 4, 187159211791705, 42, 113799, 5060, 0, 10, 1, 3, 4, 2359, 6, 776119592182705, 52, 114681, 13420, 0, 11
Offset: 1

Views

Author

Seiichi Manyama, Mar 24 2020

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,    1,    1,  1,               1, ...
  2, 0,    2,    3,  2,               5, ...
  3, 0,    4,   21,  4,            1555, ...
  4, 0,   20,  903,  6,         9673655, ...
  5, 0,  220, 2667, 12, 187159211791705, ...
  6, 0, 1220, 7077, 42, 776119592182705, ...
		

Crossrefs

A177908 Integers n such that n^3 divides 8^(n^2) - 1.

Original entry on oeis.org

1, 7, 889, 2359, 299593, 2033143, 13549249, 42931441, 100170217, 188097287, 233727361, 310935751, 685169191, 1515836567, 3606045247, 4566096913, 5452293007, 6620620783, 12721617559, 13162910047, 24088984969, 29683374847, 30987132463, 63388785719, 65576560063, 92349997537
Offset: 1

Views

Author

Max Alekseyev, May 17 2010

Keywords

Comments

Contains A127102 as a subsequence.
From M. F. Hasler, Nov 21 2018: (Start)
The first terms not in A127102 are a({10, 11, 14, 20, 21, 22, ...}) = {188097287, 233727361, 1515836567, 13162910047, 24088984969, 29683374847, ...}.
The listed terms are all squarefree, and all but the first two terms appear to be divisible by either a(3) = 7*127 or a(4) = 7*337. Are there exceptions to these properties? (End)

Crossrefs

Programs

  • Mathematica
    Select[Range[2 10^5], IntegerQ[(8^(#^2) - 1) / #^3] &] (* or *) Select[Range[2 10^6], IntegerQ[(PowerMod[8, #, #^2] - 1) / #^3] &] (* Vincenzo Librandi, Nov 23 2018 *)
  • PARI
    is(n)=Mod(8,n^3)^n^2==1 \\ M. F. Hasler, Nov 21 2018

Extensions

a(23)-a(26) from Giovanni Resta, Nov 23 2018

A177164 a(n) = (n^r - 1)/r^2, where r = (n^(n-1) - 1)/(n-1).

Original entry on oeis.org

1, 5, 9972894583, 449853889404077636694265177903207995382439448590987815041588427345865911961016023550064137351211162870609
Offset: 2

Views

Author

Alexander Adamchuk, May 04 2010

Keywords

Comments

The next term has 1204 digits.
r = (n^(n-1) - 1)/(n-1) = A060072(n) is the (n-1)-digit repunit in base n.
r^2 divides n^r - 1 for all bases n > 1.

Examples

			a(10) = (10^111111111 - 1)/111111111^2.
		

Crossrefs

Programs

  • Mathematica
    Table[(n^((n^(n - 1) - 1)/(n - 1)) - 1)/((n^(n - 1) - 1)/(n - 1))^2, {n, 2, 6}]

Formula

a(n) = (n^((n^(n-1) - 1)/(n-1)) - 1)/((n^(n-1) - 1)/(n-1))^2.
a(n) = (n^A060072(n) - 1)/A060072(n)^2.

A177906 Numbers k such that k^3 divides 6^(k^2) - 1.

Original entry on oeis.org

1, 5, 1555, 9673655, 24181805, 90993505, 200928005, 28298980055, 36850702555, 62488609555, 141377087255, 150435008905, 367279622065, 2256331679135, 7521049172905, 18802586659555, 24599612913355, 54706615318945
Offset: 1

Views

Author

Alexander Adamchuk, May 16 2010

Keywords

Comments

5 divides a(n) for n > 1.
Prime divisors of a(n) in order of their appearance are {5, 311, 6221, 15551, 18198701, 40185601, ...}.
From there on, the list is no longer increasing; it continues with 23698201, 90917741, 236192683, 93307, 311021, ... - M. F. Hasler, Oct 21 2012

Crossrefs

Programs

Extensions

More terms from Max Alekseyev, Oct 02 2010
Previous Showing 31-40 of 41 results. Next