cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A128394 Numbers k such that k^2 divides 14^k - 1.

Original entry on oeis.org

1, 13, 2041, 24355253, 249302027, 16772956369, 39665616523, 388885239223, 2974921088191, 3487599163841, 61054982558011, 200151688351277, 473329801968959
Offset: 1

Views

Author

Alexander Adamchuk, Mar 01 2007

Keywords

Comments

13 divides all except the first term.

Crossrefs

Extensions

a(4)-a(5) from Farideh Firoozbakht, Mar 05 2007
a(6)-a(13) from Max Alekseyev, May 06 2010

A128396 Numbers k such that k^2 divides 16^k-1.

Original entry on oeis.org

1, 3, 5, 15, 21, 39, 55, 105, 155, 165, 195, 205, 273, 465, 609, 615, 903, 915, 1155, 1265, 1365, 1705, 2067, 2145, 2255, 2265, 2373, 2667, 3045, 3081, 3255, 3795, 4305, 4515, 4895, 4965, 5115, 6045, 6123, 6355, 6405, 6765, 7077, 7455, 7917, 7995, 10065
Offset: 1

Views

Author

Alexander Adamchuk, Mar 01 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[11000],Divisible[16^#-1,#^2]&] (* Harvey P. Dale, Dec 14 2010 *)
    Join[{1},Select[Range[11000],PowerMod[16,#,#^2]==1&]] (* Harvey P. Dale, Mar 16 2022 *)

A177917 Numbers k such that k^3 divides 17^(k^2) - 1.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 16, 18, 20, 24, 30, 36, 40, 42, 48, 58, 60, 72, 78, 80, 84, 90, 110, 114, 116, 120, 126, 144, 156, 168, 174, 180, 210, 220, 222, 228, 232, 234, 240, 252, 290, 312, 330, 336, 342, 348, 360, 390, 420, 440, 444, 456, 464, 468, 504, 522, 546
Offset: 1

Views

Author

Alexander Adamchuk, May 14 2010

Keywords

Comments

The first 9 terms (and others) of A218087 are in this sequence A177917 as well as in A128397. These two sequences have many terms in common, but A177917 \ A128397 = {10, 30, 58, 90, 110, ...} and A128397 \ A177917 = {580, 624, 660, 684, 696, 720, ...}. - M. F. Hasler, Oct 22 2012

Crossrefs

Programs

A128401 Numbers k such that k^2 divides 21^k-1.

Original entry on oeis.org

1, 2, 4, 5, 10, 20, 22, 44, 52, 68, 110, 220, 260, 340, 506, 572, 748, 820, 884, 1012, 2530, 2756, 2860, 3740, 3916, 4108, 4420, 5060, 9020, 9724, 10660, 13156, 13780, 13940, 17204, 19580, 20540, 23782, 29084, 30316, 34060, 45188, 46852, 47564
Offset: 1

Views

Author

Alexander Adamchuk, Mar 01 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[50000],Divisible[21^#-1,#^2]&] (* Harvey P. Dale, Jun 17 2011 *)

A128403 Numbers k such that k^2 divides 23^k-1.

Original entry on oeis.org

1, 2, 4, 6, 8, 11, 12, 20, 22, 24, 40, 42, 44, 60, 66, 78, 84, 88, 120, 132, 156, 168, 212, 220, 264, 312, 420, 424, 440, 444, 462, 474, 546, 620, 636, 660, 780, 820, 840, 858, 888, 924, 948, 1014, 1060, 1092, 1218, 1220, 1240, 1272, 1320, 1560, 1640, 1716
Offset: 1

Views

Author

Alexander Adamchuk, Mar 01 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1},Select[Range[2000],PowerMod[23,#,#^2]==1&]] (* Harvey P. Dale, May 02 2015 *)

A128405 Numbers k such that k^2 divides 12^k - 1.

Original entry on oeis.org

1, 11, 253, 11891, 768361, 36112967, 61488361, 154261943, 2936791979, 61057324141, 67546215517, 107342336783, 186740152357, 347036920549, 429306186947, 468493520891, 635974117823, 797688507253, 3174672129299
Offset: 1

Views

Author

Alexander Adamchuk, Mar 01 2007

Keywords

Comments

11 divides all except the first term.
All terms are congruent to +-1 (mod 12). - Robert G. Wilson v, Dec 19 2014

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Mod[ PowerMod[12, n, n^2] - 1, n^2] == 0; k = 1; lst = {}; While[k < 100000001, If[ fQ@ k, AppendTo[lst, k]; Print@ k]; k += 10; If[ fQ@ k, AppendTo[lst, k]; Print@ k]; k += 2]; lst (* Robert G. Wilson v, Dec 19 2014 *)

Extensions

a(6)-a(8) from Farideh Firoozbakht, Mar 05 2007
Terms a(9) onward from Max Alekseyev, May 06 2010

A129212 Numbers k such that k^3 divides 4^(k^2) - 1.

Original entry on oeis.org

1, 3, 21, 57, 219, 399, 903, 1533, 2667, 4161, 7077, 17157, 18543, 29127, 32547, 50673, 65919, 74109, 96141, 113799, 114681, 134463, 194691, 227829, 304311, 352317, 383907, 389193, 463071, 516621, 672987, 797349, 863517, 898779, 932799, 1252461, 1353639
Offset: 1

Views

Author

Alexander Adamchuk, Apr 03 2007

Keywords

Comments

From Robert Israel, Aug 13 2020: (Start)
Except for 1, all terms are divisible by 3, but not 5 or 9.
All terms > 3 are divisible by at least one of 7, 19 and 73.
Are all terms squarefree? (End)

Crossrefs

Cf. A014945 (numbers k such that k divides 4^k-1).
Cf. A127104 (numbers k such that k^2 divides 4^k-1).
Cf. A128678 (numbers k such that k^3 divides 4^(k^2)+1).

Programs

  • Maple
    filter:= n -> 4&^(n^2)-1 mod (n^3) = 0:
    select(filter, [1,seq(i,i=3..10^6,6)]); # Robert Israel, Aug 13 2020
  • Mathematica
    k=2; Do[ p=Prime[k]; If[ IntegerQ[ (PowerMod[ p+1, n^2, n^3 ] - 1 )/n^3 ], Print[ {k, p, n} ]], {n,1,200000} ]
    k=2; Do[ p=Prime[k]; If[ IntegerQ[ (PowerMod[ p+1, n^2, n^3 ] - 1 )/n^3 ], Print[ {k, p, n} ]], {n,1000000} ] (* Robert G. Wilson v, Apr 06 2007 *)
    Join[{1}, Select[Range[3000000], PowerMod[4, #^2, #^3] == 1 &]] (* Robert Price, Mar 31 2020 *)

Extensions

More terms from Robert G. Wilson v, Apr 06 2007

A128395 Numbers k such that k^2 divides 15^k-1.

Original entry on oeis.org

1, 2, 4, 7, 8, 14, 16, 28, 56, 112, 136, 272, 452, 812, 904, 952, 1624, 1808, 1904, 3164, 3248, 6328, 11912, 12656, 15368, 18632, 23824, 27608, 30736, 37264, 47908, 55216, 60248, 83384, 91756, 95816, 102604, 107576, 113936, 120496, 130424, 166768
Offset: 1

Views

Author

Alexander Adamchuk, Mar 01 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a={1};For[n=1,n<200000,n++,If[PowerMod[15,n,n^2]==1, AppendTo[a, n]]]; a (* Stefan Steinerberger, Jun 10 2007 *)
    Join[{1},Select[Range[167000],PowerMod[15,#,#^2]==1&]] (* Harvey P. Dale, Sep 14 2020 *)
  • PARI
    is(k) = Mod(15, k^2)^k == 1; \\ Amiram Eldar, May 21 2024

Extensions

More terms from Stefan Steinerberger, Jun 10 2007

A128402 Numbers k such that k^2 divides 22^k-1.

Original entry on oeis.org

1, 3, 7, 21, 39, 273, 507, 3081, 3549, 21567, 40053, 78117, 280371, 343239, 546819, 1015521, 2056899, 2402673, 5998317, 6171243, 7108647, 8740173, 12338859, 14398293, 18988203, 27115881, 41988219, 43198701, 47727771, 55431363
Offset: 1

Views

Author

Alexander Adamchuk, Mar 01 2007

Keywords

Crossrefs

Programs

  • Maple
    select(t -> 22 &^ t - 1 mod t^2 = 0, [seq(2*k+1,k=0..10^6)]); # Robert Israel, Jan 23 2015
  • Mathematica
    a={}; Do[r=(22^n-1)/n^2; If[r==IntegerPart[r], AppendTo[a, n]], {n, 1, 10^3}]; a (* Vladimir Joseph Stephan Orlovsky, Aug 07 2008 *)
  • PARI
    { forstep(m=11,10^8,2, if( Mod(22,m^2)^m==1, print(m) ) ) } \\ Max Alekseyev, Oct 18 2008

Extensions

a(14)-a(30) from Max Alekseyev, Oct 18 2008

A128404 Numbers k such that k^2 divides 24^k-1.

Original entry on oeis.org

1, 23, 1081, 2870377, 7009273, 15954479, 134907719, 329435831, 537539141, 15001987199, 874750261127, 1991103024721, 4272172921319, 4862143429729, 7933540182019, 12816504745411, 41113262272969, 67084347257659
Offset: 1

Views

Author

Alexander Adamchuk, Mar 01 2007

Keywords

Comments

23 divides all terms except the first.

Crossrefs

Programs

Extensions

a(5)-a(6) from Farideh Firoozbakht, Mar 05 2007
a(7)-a(10) from Ryan Propper, Feb 23 2008
Terms a(11) onward from Max Alekseyev, May 06 2010
Previous Showing 11-20 of 27 results. Next