A127590
Numbers n such that 16n+5 is prime.
Original entry on oeis.org
0, 2, 3, 6, 9, 11, 12, 14, 17, 18, 23, 24, 26, 38, 41, 42, 44, 47, 48, 51, 53, 62, 63, 66, 68, 69, 77, 81, 86, 89, 93, 101, 102, 104, 108, 116, 117, 123, 128, 129, 138, 143, 144, 146, 147, 149, 152, 159, 167, 168, 171, 174, 177, 182, 191, 194
Offset: 1
Cf.
A035050,
A007522,
A127575,
A127576,
A127577,
A127578,
A127580,
A127581,
A087522,
A127586,
A127587,
A127589.
-
a = {}; Do[If[PrimeQ[16n + 5], AppendTo[a, n]], {n, 0, 200}]; a
Select[Range[0,200],PrimeQ[16#+5]&] (* Harvey P. Dale, Aug 31 2020 *)
-
is(n)=isprime(16*n+5) \\ Charles R Greathouse IV, Feb 17 2017
A127591
Numbers k such that 64k+21 is prime.
Original entry on oeis.org
2, 4, 10, 13, 17, 19, 20, 22, 23, 25, 29, 32, 37, 44, 50, 53, 55, 58, 59, 62, 68, 79, 83, 88, 89, 94, 95, 97, 100, 107, 109, 113, 118, 122, 134, 142, 143, 152, 155, 157, 158, 163, 167, 169, 173, 193, 194, 199, 200
Offset: 1
Cf.
A035050,
A007522,
A127575,
A127576,
A127577,
A127578,
A127580,
A127581,
A087522,
A127586,
A127587,
A127589,
A127590,
A127592,
A127593,
A127594.
-
a = {}; Do[If[PrimeQ[21 + 64 n], AppendTo[a, n]], {n, 0, 200}]; a
Select[Range[200],PrimeQ[64#+21]&] (* Harvey P. Dale, Jan 15 2016 *)
A127592
Primes of the form 64k+21.
Original entry on oeis.org
149, 277, 661, 853, 1109, 1237, 1301, 1429, 1493, 1621, 1877, 2069, 2389, 2837, 3221, 3413, 3541, 3733, 3797, 3989, 4373, 5077, 5333, 5653, 5717, 6037, 6101, 6229, 6421, 6869, 6997, 7253, 7573, 7829, 8597, 9109, 9173, 9749, 9941, 10069, 10133, 10453
Offset: 1
Cf.
A000040.
A035050,
A007522,
A127575,
A127576,
A127577,
A127578,
A127580,
A127581,
A087522,
A127586,
A127587,
A127589,
A127590,
A127591,
A127593,
A127594.
-
[p: p in PrimesUpTo(11000) | p mod 64 eq 21 ]; // Vincenzo Librandi, Sep 06 2012
-
a = {}; Do[If[PrimeQ[21 + 64 n], AppendTo[a, 21 + 64 n]], {n, 0, 200}]; a
Select[Prime[Range[1700]], MemberQ[{21}, Mod[#, 64]] &] (* Vincenzo Librandi, Sep 06 2012 *)
A127579
Primes of the form 64n+63.
Original entry on oeis.org
127, 191, 383, 1087, 1151, 1279, 1471, 1663, 2111, 2239, 2687, 2879, 3391, 3583, 3967, 4159, 4799, 5119, 5503, 6079, 6143, 6271, 6719, 6911, 7039, 7103, 7487, 8191, 8447, 8831, 9151, 9343, 9791, 10111, 10303, 10559, 10687, 11071, 11519, 11839
Offset: 1
-
[p: p in PrimesUpTo(12000) | p mod 64 eq 63]; // Vincenzo Librandi, Aug 25 2012
-
a = {}; Do[If[PrimeQ[64n + 63], AppendTo[a, 64n + 63]], {n, 1, 200}]; a
Select[Prime[Range[4000]], MemberQ[{63}, Mod[#, 64]] &] (* Vincenzo Librandi, Aug 25 2012 *)
Select[Range[63,12000,64],PrimeQ] (* Harvey P. Dale, Mar 01 2015 *)
-
forprime(p=2,1e6,if(bitand(p,63)==63,print1(p", "))) \\ Charles R Greathouse IV, May 15 2013
A127593
Primes of the form 256 k + 85.
Original entry on oeis.org
853, 1109, 1621, 1877, 2389, 3413, 5717, 6229, 6997, 7253, 10069, 10837, 11093, 12373, 13397, 16981, 17749, 18517, 18773, 19541, 21589, 22613, 23893, 24917, 27733, 29269, 30293, 31573, 32341, 37717, 39509, 40277, 41813, 43093, 46933
Offset: 1
Cf.
A035050,
A007522,
A127575,
A127576,
A127577,
A127578,
A127580,
A127581,
A087522,
A127586,
A127587,
A127589,
A127590,
A127591,
A127592,
A127594.
-
a = {}; Do[If[PrimeQ[85 + 256 n], AppendTo[a, 85 + 256 n]], {n, 0, 200}]; a
Select[256*Range[200]+85,PrimeQ] (* Harvey P. Dale, Oct 09 2020 *)
A127594
Numbers k such that 256 k + 85 is prime.
Original entry on oeis.org
3, 4, 6, 7, 9, 13, 22, 24, 27, 28, 39, 42, 43, 48, 52, 66, 69, 72, 73, 76, 84, 88, 93, 97, 108, 114, 118, 123, 126, 147, 154, 157, 163, 168, 183, 184, 186, 196, 198
Offset: 1
Cf.
A035050,
A007522,
A127575,
A127576,
A127577,
A127578,
A127580,
A127581,
A087522,
A127586,
A127587,
A127589,
A127590,
A127591,
A127592,
A127593.
-
a = {}; Do[If[PrimeQ[85 + 256 n], AppendTo[a, n]], {n, 0, 200}]; a
A127582
a(n) = the smallest prime number of the form k*2^n - 1, for k >= 1.
Original entry on oeis.org
2, 3, 3, 7, 31, 31, 127, 127, 1279, 3583, 5119, 6143, 8191, 8191, 81919, 131071, 131071, 131071, 524287, 524287, 14680063, 14680063, 109051903, 109051903, 654311423, 738197503, 738197503, 2147483647, 2147483647, 2147483647
Offset: 0
a(0)=2 because 2 = 3*2^0 - 1 is prime.
a(1)=3 because 3 = 2*2^1 - 1 is prime.
a(2)=3 because 3 = 1*2^2 - 1 is prime.
a(3)=7 because 7 = 1*2^3 - 1 is prime.
a(4)=31 because 31 = 2*2^4 - 1 is prime.
A087522 is identical except for a(1).
-
p:= 2: A[0]:= 2:
for n from 1 to 100 do
if p+1 mod 2^n = 0 then A[n]:= p
else
p:=p+2^(n-1);
while not isprime(p) do p:= p+2^n od:
A[n]:= p;
fi
od:
seq(A[i],i=0..100); # Robert Israel, Jan 13 2017
-
a = {}; Do[k = 0; While[ !PrimeQ[k 2^n + 2^n - 1], k++ ]; AppendTo[a, k 2^n + 2^n - 1], {n, 0, 50}]; a (* Artur Jasinski, Jan 19 2007 *)
A127597
Least number k such that k 4^n + (4^n-1)/3 is prime.
Original entry on oeis.org
2, 1, 0, 2, 3, 2, 4, 4, 3, 10, 3, 3, 2, 7, 2, 25, 6, 17, 4, 13, 3, 20, 36, 20, 11, 27, 66, 23, 39, 24, 19, 13, 3, 10, 6, 122, 71, 58, 24, 13, 3, 2, 41, 10, 6, 32, 58, 17, 4, 79, 26, 55, 36, 48, 31, 28, 9, 2, 76, 24, 32, 28, 63, 20, 37, 9, 2, 7, 39, 10, 91, 47
Offset: 0
Cf.
A035050,
A007522,
A127575,
A127576,
A127577,
A127578,
A127580,
A127581,
A087522,
A127586,
A127587,
A127589,
A127590,
A127591,
A127592,
A127593,
A127594,
A127598.
-
a = {}; Do[k = 0; While[ !PrimeQ[k 4^n + (4^n - 1)/3], k++ ]; AppendTo[a, k], {n, 0, 50}]; a (*Artur Jasinski*)
lnk[n_]:=Module[{k=0,n4=4^n},While[!PrimeQ[k*n4+(n4-1)/3],k++];k]; Array[ lnk,60,0] (* Harvey P. Dale, May 28 2018 *)
-
from sympy import isprime
def a(n):
k, fourn = 0, 4**n
while not isprime(k*fourn + (fourn-1)//3): k += 1
return k
print([a(n) for n in range(72)]) # Michael S. Branicky, May 18 2022
A127598
Least primes of the form k 4^n + (4^n-1)/3.
Original entry on oeis.org
2, 5, 5, 149, 853, 2389, 17749, 70997, 218453, 2708821, 3495253, 13981013, 39146837, 492131669, 626349397, 27201459541, 27201459541, 297784399189, 297784399189, 3665038759253, 3665038759253, 89426945725781
Offset: 1
Cf.
A035050,
A007522,
A127575,
A127576,
A127577,
A127578,
A127580,
A127581,
A087522,
A127586,
A127587,
A127589,
A127590,
A127591,
A127592,
A127593,
A127594,
A127597.
-
a = {}; Do[k = 0; While[ !PrimeQ[k 4^n + (4^n - 1)/3], k++ ]; AppendTo[a, k 4^n + (4^n - 1)/3], {n, 0, 50}]; a (*Artur Jasinski*)
A153264
Numbers n such that 16*n+15 is not prime.
Original entry on oeis.org
0, 3, 5, 6, 8, 9, 10, 12, 15, 17, 18, 19, 20, 21, 24, 25, 27, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 45, 47, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 65, 66, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 83, 84, 85, 86, 87, 90, 93, 94, 95, 96, 99
Offset: 1
Distribution of the terms in the following triangular array:
*;
0,*;
*,*,*;
*,*,3,*;
*,*,*,*,*;
*,*,*,*,8,*;
*,*,*,*,*,*,*;
*,*,*,*,*,*,15,*;
*,5,*,*,*,*,*,*,*;
3,*,*,*,*,*,*,*,24,*;
*,*,*,12,*,*,*,*,*,*,*;
*,*,10,*,*,*,*,*,*,*,35,*; etc.
where * marks the non-integer values of (2*h*k + k + h - 7)/8 with h >= k >= 1. - _Vincenzo Librandi_, Jan 15 2013
Comments