cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A141195 Primes of the form 16k+11.

Original entry on oeis.org

11, 43, 59, 107, 139, 251, 283, 331, 347, 379, 443, 491, 523, 571, 587, 619, 683, 811, 827, 859, 907, 971, 1019, 1051, 1163, 1259, 1291, 1307, 1451, 1483, 1499, 1531, 1579, 1627, 1723, 1787, 1867, 1931, 1979, 2011, 2027, 2203, 2251, 2267, 2347, 2411, 2459
Offset: 1

Views

Author

T. D. Noe, Jun 12 2008

Keywords

Crossrefs

Programs

A141196 Primes of the form 16k+13.

Original entry on oeis.org

13, 29, 61, 109, 157, 173, 269, 317, 349, 397, 461, 509, 541, 557, 653, 701, 733, 797, 829, 877, 941, 1021, 1069, 1117, 1181, 1213, 1229, 1277, 1373, 1453, 1549, 1597, 1613, 1693, 1709, 1741, 1789, 1901, 1933, 1949, 1997, 2029, 2141, 2221, 2237, 2269
Offset: 1

Views

Author

T. D. Noe, Jun 12 2008

Keywords

Comments

Which sequence, this or A141194, produces more primes? The race is very close. For example, A141194(1000)=80599 and A141196(1000)=80909, a difference of just 32 primes after a thousand terms. - Art Baker, Aug 07 2019

Crossrefs

Programs

A127597 Least number k such that k 4^n + (4^n-1)/3 is prime.

Original entry on oeis.org

2, 1, 0, 2, 3, 2, 4, 4, 3, 10, 3, 3, 2, 7, 2, 25, 6, 17, 4, 13, 3, 20, 36, 20, 11, 27, 66, 23, 39, 24, 19, 13, 3, 10, 6, 122, 71, 58, 24, 13, 3, 2, 41, 10, 6, 32, 58, 17, 4, 79, 26, 55, 36, 48, 31, 28, 9, 2, 76, 24, 32, 28, 63, 20, 37, 9, 2, 7, 39, 10, 91, 47
Offset: 0

Views

Author

Artur Jasinski, Jan 19 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[k = 0; While[ !PrimeQ[k 4^n + (4^n - 1)/3], k++ ]; AppendTo[a, k], {n, 0, 50}]; a (*Artur Jasinski*)
    lnk[n_]:=Module[{k=0,n4=4^n},While[!PrimeQ[k*n4+(n4-1)/3],k++];k]; Array[ lnk,60,0] (* Harvey P. Dale, May 28 2018 *)
  • Python
    from sympy import isprime
    def a(n):
        k, fourn = 0, 4**n
        while not isprime(k*fourn + (fourn-1)//3): k += 1
        return k
    print([a(n) for n in range(72)]) # Michael S. Branicky, May 18 2022

Extensions

Offset corrected and a(51) and beyond from Michael S. Branicky, May 18 2022

A228228 Primes congruent to {3, 5, 13, 15} mod 16.

Original entry on oeis.org

3, 5, 13, 19, 29, 31, 37, 47, 53, 61, 67, 79, 83, 101, 109, 127, 131, 149, 157, 163, 173, 179, 181, 191, 197, 211, 223, 227, 229, 239, 269, 271, 277, 293, 307, 317, 349, 367, 373, 383, 389, 397, 419, 421, 431, 461, 463, 467, 479, 499, 509, 541, 547, 557, 563
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 16 2013

Keywords

Comments

Union of A091968, A127589, A141196, and A127576.
Let p be a prime number and let E(p) denote the elliptic curve y^2 = x^3 + p*x. If p is in the sequence, then the rank of E(p) is 0 or 1. Therefore, A060953(a(n)) must be one of only two values: 0 or 1.

References

  • J. H. Silverman, The arithmetic of elliptic curves, Springer, NY, 1986, p. 311.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(563) | p mod 16 in {3, 5, 13, 15}];
  • Mathematica
    Select[Prime@Range[103], MemberQ[{3, 5, 13, 15}, Mod[#, 16]] &]

A263769 Smallest prime q such that q == -1 (mod prime(n)-1).

Original entry on oeis.org

2, 3, 3, 5, 19, 11, 31, 17, 43, 83, 29, 71, 79, 41, 137, 103, 173, 59, 131, 139, 71, 233, 163, 263, 191, 199, 101, 211, 107, 223, 251, 389, 271, 137, 443, 149, 311, 647, 331, 859, 1423, 179, 379, 191, 587, 197, 419, 443
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 25 2015

Keywords

Comments

a(n): A000040(1), A065091(1), A002145(1), A007528(1), A030433(1), A068231(1), A127576(1), A061242(1), A141857(1), A141976(1), A132236(1), A142111(1), A142198(1), A141898(1), A141926(1), A142531(1), A142004(1), A142799(1), A142068(1), A142099(1), ...
Smallest prime q such that (prime(n)^2 + q*prime(n))/(prime(n) + 1) is an integer.

Examples

			a(4) = 5 because 5 == -1 (mod prime(4)-1) and is prime.
		

Crossrefs

Programs

  • Maple
    for n from 1 to 100 do
      k:= ithprime(n)-1;
      q:= 2;
      while (1 + q) mod k <> 0 do
        q:= nextprime(q)
      od;
      A[n]:= q;
    od:
    seq(A[i],i=1..1000); # Robert Israel, Oct 26 2015
  • Mathematica
    Table[q = 2; z = Prime@ n - 1; While[Mod[q, z] != z - 1, q = NextPrime@ q]; q, {n, 59}] (* Michael De Vlieger, Oct 26 2015 *)

Extensions

Corrected and edited by Robert Israel, Oct 26 2015,

A127598 Least primes of the form k 4^n + (4^n-1)/3.

Original entry on oeis.org

2, 5, 5, 149, 853, 2389, 17749, 70997, 218453, 2708821, 3495253, 13981013, 39146837, 492131669, 626349397, 27201459541, 27201459541, 297784399189, 297784399189, 3665038759253, 3665038759253, 89426945725781
Offset: 1

Views

Author

Artur Jasinski, Jan 19 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[k = 0; While[ !PrimeQ[k 4^n + (4^n - 1)/3], k++ ]; AppendTo[a, k 4^n + (4^n - 1)/3], {n, 0, 50}]; a (*Artur Jasinski*)

A306431 Least number x > 1 such that n*x divides 1 + Sum_{k=1..x-1} k^(x-1).

Original entry on oeis.org

2, 3, 13, 7, 19, 31, 41, 31, 13, 19, 43, 31, 23, 83, 139, 31, 61, 67, 113, 79, 251, 43, 19, 31, 199, 23, 13, 167, 53, 139, 83, 127, 157, 67, 293, 431, 443, 151, 103, 79, 61, 251, 113, 47, 337, 19, 179, 31, 41, 199, 67, 23, 19, 499, 181, 367, 607, 139, 257, 359
Offset: 1

Views

Author

Paolo P. Lava, Apr 05 2019

Keywords

Comments

If n = 1, all the solutions of x | 1 + Sum_{k=1..x-1} k^(x-1) should be prime numbers, according to Giuga's conjecture.
If n*x | 1 + Sum_{k=1..x-1} k^(x-1), then certainly x does, so Giuga's conjecture would say x must be prime. Similarly if x^n divides it, so does x, so again Giuga would say x is prime. - Robert Israel, Apr 26 2019
E.g., the first solution for x^2 | 1 + Sum_{k=1..x-1} k^(x-1) is x = 1277, that is prime.

Examples

			a(4) = 7 because (1 + 1^6 + 2^6 + 3^6 + 4^6 + 5^6 + 6^6) / (4*7) = 67172 / 28 = 2399 and it is the least prime to have this property.
		

Crossrefs

Cf. A191677. All the solutions for n = m: A000040 (m=1), A002145 (m=2), A007522 (m=4), A127576 (m=8), A141887 (m=10), A127578 (m=16), A142198 (m=20), A127579 (m=32), A095995 (m=50).

Programs

  • Maple
    P:=proc(j) local k,n; for n from 2 to 10^6 do
    if frac((add(k^(n-1),k=1..n-1)+1)/(j*n))=0
    then RETURN(n); break; fi; od; end: seq(P(i),i=1..60);
  • Mathematica
    a[n_] := For[x = 2, True, x++, If[Divisible[1+Sum[k^(x-1), {k, x-1}], n x], Return[x]]];
    Array[a, 60] (* Jean-François Alcover, Oct 16 2020 *)
  • PARI
    a(n) = my(x=2); while (((1 + sum(k=1, x-1, k^(x-1))) % (n*x)), x++); x; \\ Michel Marcus, Apr 27 2019

Formula

Least solution of n*x | 1 + Sum_{k=1..x-1} k^(x-1), for n = 1, 2, 3, ...
Previous Showing 21-27 of 27 results.