cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A130655 Catalan transform of Catalan numbers C(n+1).

Original entry on oeis.org

1, 2, 7, 28, 119, 524, 2363, 10844, 50446, 237280, 1126437, 5389916, 25967972, 125868952, 613385075, 3003586196, 14771851093, 72936101780, 361419276386, 1796837068400, 8960207761500
Offset: 0

Views

Author

Philippe Deléham, Jun 21 2007

Keywords

Crossrefs

Programs

  • Maple
    A130655 := proc(n)
        add(A106566(n,k)*A000108(k+1),k=0..n) ;
    end proc: # R. J. Mathar, Mar 01 2015
  • Mathematica
    CoefficientList[Series[2/(Sqrt[-1 + 2*Sqrt[1-4*x]] + Sqrt[1-4*x]),{x,0,20}],x] (* Vaclav Kotesovec, Jul 02 2015 *)
  • PARI
    x='x+O('x^50); Vec(2/(sqrt(-1 + 2*sqrt(1-4*x)) + sqrt(1-4*x))) \\ G. C. Greubel, Mar 21 2017

Formula

a(n) = Sum_{k=0..n} A106566(n,k)*A000108(k+1).
Conjecture: 3*n*(n-2)*(n+2)*a(n) +4*(-10*n^3+21*n^2+7*n-15)*a(n-1) +16*(11*n^3-47*n^2+57*n-15)*a(n-2) -8*(2*n-5)*(4*n-9)*(4*n-7)*a(n-3)=0. - R. J. Mathar, Mar 01 2015
G.f.: (C(x*C(x))-1)/(x*C(x)), where C(x) is g.f. of Catalan numbers A000108. - Vladimir Kruchinin, Jul 02 2015
a(n) ~ 2^(4*n+3/2) / (sqrt(Pi) * n^(3/2) * 3^(n-1/2)). - Vaclav Kotesovec, Jul 02 2015

A344056 a(n) = (2*n)! * hypergeom([3/2, 2, 1-n], [3, 2 - 2*n], 4) for n >= 1 and a(0) = 1.

Original entry on oeis.org

1, 2, 72, 3960, 354816, 47952000, 9169459200, 2363720486400, 791505727488000, 334400903553024000, 174128130895380480000, 109627479651269099520000, 82122139255681984757760000, 72210265570358144925696000000, 73668698593180294904178278400000, 86324332785379145107697958912000000
Offset: 0

Views

Author

Peter Luschny, May 12 2021

Keywords

Crossrefs

Cf. A127632.

Programs

  • Mathematica
    a[n_] := (2 n)! HypergeometricPFQ[{3/2, 2, 1 - n}, {3, 2 - 2n}, 4]; a[0] := 1;
    Table[a[n], {n, 0, 15}]

Formula

a(n) * Catalan(n - 1) = (2*n)! * A127632(n) for n >= 1.

A350645 Number of permutations avoiding 132 of length 3n composed of only 3-cycles.

Original entry on oeis.org

1, 2, 8, 36, 170, 824, 4060, 20232, 101664, 514140, 2613468, 13340496, 68335644, 351087128, 1808405600, 9335697424, 48289295226, 250213951992, 1298517484804, 6748250144600, 35114221973600, 182924946400680, 953931045159000, 4979398271047200, 26014703727203100
Offset: 0

Views

Author

Kassie Archer, Jan 09 2022

Keywords

Comments

Also the number of permutations avoiding 213 of length 3n composed of only 3-cycles.

Examples

			For n=2, the eight permutations (in one-line notation and cycle notation) are:
  [6, 5, 2, 1, 3, 4] (1,6,4)(2,5,3)
  [6, 4, 2, 3, 1, 5] (1,6,5)(2,4,3)
  [6, 3, 4, 2, 1, 5] (1,6,5)(2,3,4)
  [5, 6, 1, 2, 3, 4] (1,5,3)(2,6,4)
  [3, 4, 5, 6, 1, 2] (1,3,5)(2,4,6)
  [4, 3, 5, 6, 2, 1] (1,4,6)(2,3,5)
  [5, 3, 4, 2, 6, 1] (1,5,6)(2,3,4)
  [5, 4, 2, 3, 6, 1] (1,5,6)(2,4,3) .
		

Crossrefs

Formula

G.f.: c(x*c(x))/(2-c(x*c(x))) where c(x) is the generating function for Catalan numbers. Notice c(x*c(x)) is given in A127632.
G.f.: (1+A(x))/(1-A(x)) where A(x) = (c(x)-1)*c(m(x)-1) where c(x) is the generating function for Catalan numbers and m(x) is the generating function for the Motzkin numbers.

A366114 Expansion of (1/x) * Series_Reversion( x*(1+x+x^2)/(1+x)^3 ).

Original entry on oeis.org

1, 2, 4, 7, 9, 2, -34, -130, -284, -284, 730, 4864, 14860, 27134, 6462, -170865, -771303, -2005828, -2751028, 3491747, 36288137, 130265102, 283131062, 210905402, -1317613954, -7461822262, -22297519418, -38398674146, 10151248222, 355843715494, 1495838414326
Offset: 0

Views

Author

Seiichi Manyama, Sep 29 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*binomial(n+k, k)*binomial(2*n-k+2, n-2*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(n+k,k) * binomial(2*n-k+2,n-2*k).

A381861 G.f. A(x) satisfies A(x) = (1 + x*A(x))^4 * C(x), where C(x) is the g.f. of A000108.

Original entry on oeis.org

1, 5, 32, 231, 1797, 14715, 125064, 1093194, 9766783, 88793815, 818832674, 7640868924, 72014955566, 684551660324, 6555290711728, 63179148757584, 612376024087047, 5965515657187437, 58375460484257734, 573545171374958628, 5655759227878768987, 55957005428512022905
Offset: 0

Views

Author

Seiichi Manyama, Mar 08 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+k+1, k)*binomial(4*n-4*k+4, n-k)/(n+k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+k+1,k) * binomial(4*n-4*k+4,n-k)/(n+k+1).
a(n) = binomial(4 + 4*n, n)*hypergeom([-4/3-n, -2/3-n, -n, 1+n], [-3/4-n, -1/2-n, -1/4-n], 3^3/2^8)/(1 + n). - Stefano Spezia, Mar 09 2025

A295703 Expansion of R(x*R(x)), where R(x) = 1/(1 + x/(1 + x^2/(1 + x^3/(1 + x^4/(1 + ...))))), a continued fraction (g.f. for A007325).

Original entry on oeis.org

1, -1, 2, -3, 2, 4, -18, 43, -80, 123, -148, 78, 287, -1364, 3858, -8627, 15901, -23076, 20061, 18294, -140623, 420241, -930040, 1655753, -2293975, 1872682, 1835066, -12983537, 37871888, -83222132, 149287250, -212064236, 186932259, 131172644, -1139053896, 3449157957, -7710640256
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 29 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 36; CoefficientList[Series[1/(1 + ContinuedFractionK[(x/(1 + ContinuedFractionK[x^k, 1, {k, 1, nmax}]))^k, 1, {k, 1, nmax}]), {x, 0, nmax}], x]
    g[x_] := g[x] = QPochhammer[x, x^5] QPochhammer[x^4, x^5]/(QPochhammer[x^2, x^5] QPochhammer[x^3, x^5]); a[n_] := a[n] = SeriesCoefficient[g[x g[x]], {x, 0, n}];  Table[a[n], {n, 0, 36}]

Formula

G.f.: 1/(1 + x/(1 + x/(1 + x^2/(1 + x^3/(1 + ...))))/(1 + x^2/(1 + x/(1 + x^2/(1 + x^3/(1 + ...))))^2/(1 + x^3/(1 + x/(1 + x^2/(1 + x^3/(1 + ...))))^3/(1 + ...)))), a continued fraction.
Previous Showing 11-16 of 16 results.