cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A379463 a(n) is the total number of paths starting at (0, 0), ending at (n, 0), consisting of steps (1, 1), (1, 0), (1, -3), and staying on or above y = -1.

Original entry on oeis.org

1, 1, 1, 1, 3, 11, 31, 71, 150, 334, 826, 2146, 5498, 13690, 33762, 84306, 214451, 551107, 1417291, 3637627, 9343555, 24096675, 62439587, 162331747, 422773098, 1102422546, 2879207046, 7534606366, 19756893196, 51894005428, 136496647696, 359478351816, 947912008073
Offset: 0

Views

Author

Emely Hanna Li Lobnig, Dec 23 2024

Keywords

Examples

			For n = 4, the a(4)=3 paths are HHHH, UUDU, UUUD, where U=(1,1), D=(1,-3) and H=(1,0).
		

Crossrefs

Programs

  • Maple
    A379463 := proc(n)
        add(2*binomial(n, k*4)*binomial(4*k+1, k)/(3*k+2),k=0..floor(n/4)) ;
    end proc:
    seq(A379463(n),n=0..50) ; # R. J. Mathar, Jan 29 2025
  • PARI
    a(n) = sum(k=0, floor(n/4), 2*binomial(n, k*4)*binomial(4*k+1, k)/(3*k+2)) \\ Thomas Scheuerle, Jan 07 2025

Formula

a(n) ~ 2^(3/2) * (1 + 4/3^(3/4))^(n + 3/2) / (3^(11/8) * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jan 15 2025
Conjecture D-finite with recurrence 3*n*(3*n+4)*(n-3)*(3*n+8)*a(n) +3*(-45*n^4+54*n^3+192*n^2-27*n-20)*a(n-1)
+9*(n-1)*(30*n^3-72*n^2-7*n+20)*a(n-2) -3*(n-1)*(n-2)*(90*n^2-234*n+95)*a(n-3) -(n-1)*(n-2)*(n-3)*(121*n+499)*a(n-4) +229*(n-1)*(n-2)*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Jan 29 2025

Extensions

More terms from Jinyuan Wang, Jan 07 2025

A379464 a(n) is the total number of paths starting at (0, 0), ending at (n, 0), consisting of steps (1, 1), (1, 0), (1, -3), and staying on or above y = -2.

Original entry on oeis.org

1, 1, 1, 1, 4, 16, 46, 106, 226, 514, 1306, 3466, 9002, 22634, 56330, 142026, 364743, 945303, 2448511, 6323695, 16336885, 42363693, 110340297, 288229377, 753920796, 1973799396, 5174280216, 13588243696, 35748326836, 94188788164, 248464963876, 656148369796
Offset: 0

Views

Author

Emely Hanna Li Lobnig, Dec 23 2024

Keywords

Examples

			For n = 4, the a(4)=4 paths are HHHH, UDUU, UUDU, UUUD, where U=(1,1), D=(1,-3) and H=(1,0).
		

Crossrefs

Programs

  • Maple
    f:= proc(n,y) option remember;
        if n = 0 then if y = 0 then return 1 else return 0 fi fi;
        if y > n then return 0 fi;
        if y >= -1 then procname(n-1,y-1) + procname(n-1,y) + procname(n-1,y+3)
        else procname(n-1,y) + procname(n-1,y+3)
        fi;
    end proc:
    map(f, [$0..40],0); # Robert Israel, Jan 23 2025
  • PARI
    a(n) = sum(k=0, floor(n/4), 3*binomial(n, k*4)*binomial(4*k+3, k)/(4*k+3)) \\ Thomas Scheuerle, Jan 07 2025

Formula

a(n) ~ 2^(5/2) * (1 + 4/3^(3/4))^(n + 3/2) / (3^(11/8) * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jan 15 2025
Conjecture D-finite with recurrence +3*(n+4)*(3*n+4)*(3*n+8)*a(n) +3*(-63*n^3-297*n^2-349*n-60)*a(n-1) +3*(189*n^3+270*n^2-229*n-140)*a(n-2) +15*(-63*n^3+117*n^2+44*n-64)*a(n-3) +(689*n^3-5372*n^2+6946*n-1288)*a(n-4) +(n-4)*(201*n^2+2767*n-3011)*a(n-5) -(n-5)*(579*n+257)*(n-4)*a(n-6) +229*(n-5)*(n-6)*(n-4)*a(n-7)=0. - R. J. Mathar, Jan 29 2025

Extensions

More terms from Jinyuan Wang, Jan 07 2025

A365079 G.f. satisfies A(x) = 1 + x*A(x)*(1 + x^4*A(x)^3).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 6, 16, 36, 71, 131, 247, 511, 1156, 2696, 6172, 13664, 29563, 63871, 140341, 315185, 717962, 1639822, 3728276, 8432696, 19047924, 43166420, 98378502, 225355290, 517683270, 1190034046, 2735049866, 6287002806, 14467864356, 33355524916
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\5, binomial(n-4*k, k)*binomial(n-k+1, n-4*k)/(n-k+1));

Formula

a(n) = Sum_{k=0..floor(n/5)} binomial(n-4*k,k) * binomial(n-k+1,n-4*k)/(n-k+1).

A367114 G.f. satisfies A(x) = 1 + 2*x*A(x) + x^4*A(x)^4.

Original entry on oeis.org

1, 2, 4, 8, 17, 42, 124, 408, 1380, 4616, 15184, 49568, 162518, 539580, 1818184, 6203088, 21339916, 73776024, 255853744, 889678688, 3102779785, 10856555130, 38115293308, 134243564056, 474159194316, 1678926445272, 5957812156144, 21183679310048
Offset: 0

Views

Author

Seiichi Manyama, Nov 05 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, 2^(n-4*k)*binomial(n, 4*k)*binomial(4*k, k)/(3*k+1));

Formula

a(n) = Sum_{k=0..floor(n/4)} 2^(n-4*k) * binomial(n,4*k) * A002293(k).
Previous Showing 11-14 of 14 results.