cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 56 results. Next

A245045 Primes of the form (k^2+2)/6.

Original entry on oeis.org

3, 11, 17, 43, 67, 113, 131, 193, 241, 353, 523, 641, 683, 1291, 1601, 1667, 1873, 2017, 2243, 2731, 3083, 3361, 3851, 4483, 4817, 4931, 5281, 5521, 7211, 8363, 8513, 8971, 9283, 9923, 10753, 11971, 13633, 16433, 17713, 18371, 18593, 19267, 21841, 22571
Offset: 1

Views

Author

Chai Wah Wu, Jul 10 2014

Keywords

Examples

			When k=4, (k^2+2)/6 = 3 is prime, so 4 is a member of the sequence. since putting k = 0, 1, 2, or 3 does not give a prime, so 4 is the first term.
		

Crossrefs

Cf. A154616, A002327, A066436. First 5 terms equal to A078116. First 4 terms equal to A127996.

Programs

  • Python
    import sympy
    [(k**2+2)/6 for k in range(10**6) if sympy.ntheory.isprime((k**2+2)/6) & ((k**2+2)/6).is_integer()]

A245442 Numbers n such that (50^n - 1)/49 is prime.

Original entry on oeis.org

3, 5, 127, 139, 347, 661, 2203, 6521, 210319
Offset: 1

Views

Author

Robert Price, Jul 22 2014

Keywords

Comments

a(9) > 10^5.
All terms are prime.

Crossrefs

Programs

Extensions

a(9)=210319 corresponds to a probable prime discovered by Paul Bourdelais, Aug 04 2020

A181987 Numbers n such that (39^n - 1)/38 is prime.

Original entry on oeis.org

349, 631, 4493, 16633, 36341
Offset: 1

Views

Author

Robert Price, Apr 04 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[100000]], PrimeQ[(39^#-1)/38]&]
  • PARI
    is(n)=ispseudoprime((39^n-1)/38) \\ Charles R Greathouse IV, Jun 13 2017

A294722 Numbers k such that (44^k - 1)/43 is prime.

Original entry on oeis.org

5, 31, 167, 100511
Offset: 1

Views

Author

Paul Bourdelais, Nov 07 2017

Keywords

Comments

The number corresponding to a(4) is a probable prime.
These are the indices of base-44 repunit primes, i.e., numbers k such that A002275(k) interpreted as a base-44 number and converted to decimal is prime. - Felix Fröhlich, Nov 08 2017

Crossrefs

Programs

  • Mathematica
    ParallelMap[ If[ PrimeQ[(44^# - 1)/43], #, Nothing] &, Prime@Range @ 10000] (* Robert G. Wilson v, Nov 25 2017 *)
  • PARI
    is(n) = ispseudoprime((44^n-1)/43) \\ Felix Fröhlich, Nov 08 2017
  • PFGW
    ABC2 (44^$a-1)/43 // -f{2*$a}
    a: primes from 2 to 1000000
    

A376329 Numbers k such that (45^k - 2^k)/43 is prime.

Original entry on oeis.org

2, 7, 89, 167, 8101, 96517
Offset: 1

Views

Author

Robert Price, Nov 19 2024

Keywords

Comments

The definition implies that k must be a prime.
a(7) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(45^# - 2^#)/43] &]

A376470 Numbers k such that (29^k - 2^k)/27 is prime.

Original entry on oeis.org

2, 7, 139, 983, 3257, 10181, 26387, 36187, 42557
Offset: 1

Views

Author

Robert Price, Sep 24 2024

Keywords

Comments

The definition implies that k must be a prime.
a(10) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000]], PrimeQ[(29^# - 2^#)/27] &]

A377180 Numbers k such that (43^k - 2^k)/41 is prime.

Original entry on oeis.org

167, 797, 1009, 54941
Offset: 1

Views

Author

Robert Price, Oct 18 2024

Keywords

Comments

The definition implies that k must be a prime.
a(5) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(43^# - 2^#)/41] &]

A377699 Numbers k such that (35^k - 2^k)/33 is prime.

Original entry on oeis.org

2, 17, 53, 211, 4013, 55207
Offset: 1

Views

Author

Robert Price, Nov 05 2024

Keywords

Comments

The definition implies that k must be a prime.
a(7) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(35^# - 2^#)/33] &]

A377718 Numbers k such that (41^k - 2^k)/39 is prime.

Original entry on oeis.org

2, 41, 97, 131, 2411, 7321
Offset: 1

Views

Author

Robert Price, Nov 04 2024

Keywords

Comments

The definition implies that k must be a prime.
a(7) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(41^# - 2^#)/39] &]

A377779 Numbers k such that (31^k - 2^k)/29 is prime.

Original entry on oeis.org

5, 17, 541, 701, 769
Offset: 1

Views

Author

Robert Price, Nov 06 2024

Keywords

Comments

The definition implies that k must be a prime.
a(6) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(31^# - 2^#)/29] &]
Previous Showing 11-20 of 56 results. Next