cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A128370 a(n) = least k such that the remainder of 30^k divided by k is n.

Original entry on oeis.org

29, 7, 26997, 13, 8471, 33, 23, 11, 721, 55, 19, 39, 17, 886, 21, 26, 803, 98, 13289, 22, 51, 878, 1141, 146, 35, 38, 111, 218, 515267673651961, 31, 3212679202339, 56, 267, 866, 4367, 42, 10129, 862, 57, 86, 42691, 13479, 949, 214, 95, 77, 7633, 52, 1469, 170, 429, 68, 2791229, 94, 215, 422, 3849, 842, 9773, 140
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Crossrefs

Programs

  • Mathematica
    t = Table[0, {10000} ]; k = 1; While[ k < 5100000000, a = PowerMod[30, k, k]; If[a < 10001 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t (* Robert G. Wilson v, Aug 06 2009 *)

Extensions

Terms a(29) onward from Max Alekseyev, Mar 22 2012

A128148 a(n) = least k such that 3^k mod k = 2^n.

Original entry on oeis.org

2, 2929, 41459, 2352527, 144937, 1055, 1829903, 7316185805, 114491, 3146746271, 5028467, 20299, 69609309001, 129433, 15307006153, 2149705, 66469, 559182815, 18429503, 4529951, 7094711, 83591212702535, 1251548749, 38088889
Offset: 0

Views

Author

Alexander Adamchuk, Feb 16 2007

Keywords

Examples

			a(1) = A128149(3) = 2929.
a(2) = A128150(3) = 41459.
		

Crossrefs

Cf. A078457 = least k such that the remainder when 3^k is divided by k is n.

Formula

a(n) = A078457(2^n).

Extensions

a(7)-a(9) from A078457. Max Alekseyev, Mar 11 2009
Extended by Max Alekseyev, Mar 15 2009
a(20) from Hagen von Eitzen, Aug 01 2009
a(21)-a(23) from Max Alekseyev, Feb 13 2012

A126762 a(n) is the least k > n such that the remainder when n^k is divided by k is n.

Original entry on oeis.org

2, 3, 5, 5, 7, 7, 11, 9, 11, 11, 13, 13, 17, 15, 17, 17, 19, 19, 23, 21, 23, 23, 29, 25, 28, 27, 29, 29, 31, 31, 37, 33, 37, 35, 37, 37, 41, 39, 41, 41, 43, 43, 47, 45, 47, 47, 53, 49, 53, 51, 53, 53, 59, 55, 59, 57, 59, 59, 61, 61, 67, 63, 67, 65, 67, 67, 71, 69, 71, 71, 73, 73
Offset: 1

Views

Author

Alexander Adamchuk, Feb 17 2007

Keywords

Comments

a(n-1) = n for n = {2,3,5,7,9,11,13,15,17,19,21,23,25,27,29,...} = 2 together with odd numbers n > 1.
a(n) coincides with A082048(n) up to n = 24.
a(n) is the smallest number k > n such that n^k == n (mod k). Conjecture: a(n) is the smallest number k > n such that n^(k-1) == 1 (mod k). Thus a(n) is coprime to n. - Thomas Ordowski, Aug 03 2018

Crossrefs

Cf. A128149 = Least k such that n^k (mod k) = n-1. Cf. A128172 = Least k such that n^k (mod k) = n+1. Cf. A036236, A078457, A119678, A119679, A127816, A119715, A119714, A127817, A127818, A127819, A127820, A127821, A128154, A128155, A128156, A128157, A128158, A128159, A128160. Cf. A082048 = least number greater than n having greater smallest prime factor than that of n.

Programs

  • Mathematica
    Table[Min[Select[Range[101],PowerMod[n,#,# ]==n&]],{n,1,100}]
    lkgn[n_]:=Module[{k=1},While[PowerMod[n,k,k]!=n,k++];k]; Array[lkgn,80] (* Harvey P. Dale, May 25 2021 *)

Extensions

Name clarified by Thomas Ordowski, Aug 03 2018

A177495 a(n) is the least k such that the remainder when 100^k is divided by k is n.

Original entry on oeis.org

3, 7, 97, 6, 19, 38, 31, 23, 13, 15, 89, 22, 29, 43, 17, 24, 83, 41, 19003, 580, 79, 42, 1903, 58, 35, 37, 73, 36, 71, 49, 999969, 56, 67, 66, 145, 76, 411, 578, 61, 60, 59, 494, 51, 262, 55, 158, 53, 52, 57, 398, 15673, 69, 1589, 9946, 65, 88, 20940211, 366, 391
Offset: 1

Views

Author

Alexander Adamchuk, May 10 2010

Keywords

Crossrefs

Programs

  • Mathematica
    t = Table[0, {70}]; k = 1; While[k < 210000000, a = PowerMod[100, k, k]; If[a < 71 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t
    Table[Module[{k=1},While[PowerMod[100,k,k]!=n,k++];k],{n,60}] (* Harvey P. Dale, Jun 06 2018 *)

A321364 Positive integers m such that 13^m == 12 (mod m).

Original entry on oeis.org

1, 13757837, 6969969233, 514208575135
Offset: 1

Views

Author

Max Alekseyev, Nov 07 2018

Keywords

Comments

No other terms below 10^15.
Some larger terms: 14551705803598782884189, 268766423508299769671017810348321281664525668552158231.

Crossrefs

Solutions to 13^m == k (mod m): A001022 (k=0), A015963 (k=-1), A116621 (k=1), A116622 (k=2), A116629 (k=3), A116630 (k=4), A116611 (k=5), A116631 (k=6), A116632 (k=7), A295532 (k=8), A116636 (k=9), A116620(k=10), A116638 (k=11), this sequence (k=12), A321365 (k=14), A116639 (k=15).

Programs

A321365 Positive integers n such that 13^n == 14 (mod n).

Original entry on oeis.org

1, 5805311, 392908759, 399614833907, 2674764845549, 21997277871211, 67146783889057
Offset: 1

Views

Author

Max Alekseyev, Nov 08 2018

Keywords

Comments

No other terms below 10^15.

Crossrefs

Solutions to 13^n == k (mod n): A001022 (k=0), A015963 (k=-1), A116621 (k=1), A116622 (k=2), A116629 (k=3), A116630 (k=4), A116611 (k=5), A116631 (k=6), A116632 (k=7), A295532 (k=8), A116636 (k=9), A116620(k=10), A116638 (k=11), A321364 (k=12), this sequence (k=14), A116639 (k=15).

Programs

A177496 a(n) is the least k such that the remainder when 1000^k is divided by k is n.

Original entry on oeis.org

3, 62, 997, 6, 115, 7, 51, 14, 991, 11, 23, 13, 21, 17, 197, 24, 983, 158, 109, 35, 89, 42, 977, 61, 39, 34, 139, 36, 971, 38, 3291, 188, 967, 66, 193, 92, 57, 74, 999161, 52, 137, 479, 69, 239, 191, 53, 953, 49, 317, 70, 73, 79, 947, 65291, 63, 59, 448991, 114, 941
Offset: 1

Views

Author

Alexander Adamchuk, May 10 2010

Keywords

Crossrefs

Programs

  • Mathematica
    t = Table[0, {98}]; k = 1; While[k < 10000000, a = PowerMod[1000, k, k]; If[a < 99 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t
    lk[n_]:=Module[{k=1},While[PowerMod[1000,k,k]!=n,k++];k]; Array[lk,60] (* Harvey P. Dale, Jul 21 2021 *)
Previous Showing 21-27 of 27 results.