A128969
a(n) = (n^3 - n)*9^n.
Original entry on oeis.org
0, 486, 17496, 393660, 7085880, 111602610, 1607077584, 21695547384, 278942752080, 3451916556990, 41422998683880, 484649084601396, 5551434969070536, 62453643402043530, 691794203838020640, 7560322370515511280, 81651481601567521824, 872650209616752889494
Offset: 1
-
[(n^3-n)*9^n: n in [0..25]]; // Vincenzo Librandi, Feb 11 2013
-
I:=[0, 486, 17496, 393660]; [n le 4 select I[n] else 36*Self(n-1) - 486*Self(n-2) + 2916*Self(n-3) - 6561*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Feb 11 2013
-
CoefficientList[Series[486 x/(1 - 9 x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 11 2013 *)
A116138
a(n) = 3^n * n*(n + 1).
Original entry on oeis.org
0, 6, 54, 324, 1620, 7290, 30618, 122472, 472392, 1771470, 6495390, 23383404, 82904796, 290166786, 1004423490, 3443737680, 11708708112, 39516889878, 132497807238, 441659357460, 1464449448420, 4832683179786, 15878816162154
Offset: 0
-
List([0..30], n-> 3^n*n*(n+1)); # G. C. Greubel, May 10 2019
-
[(n^2+n)*3^n: n in [0..30]]; // Vincenzo Librandi, Feb 28 2013
-
I:=[0,6,54]; [n le 3 select I[n] else 9*Self(n-1)-27*Self(n-2)+27*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Feb 28 2013
-
Table[(n^2 + n) 3^n, {n, 0, 30}] (* Vincenzo Librandi, Feb 28 2013 *)
-
a(n)=(n^2+n)*3^n \\ Charles R Greathouse IV, Feb 28 2013
-
[3^n*n*(n+1) for n in (0..30)] # G. C. Greubel, May 10 2019
A128988
a(n) = (n^3 - n^2)*5^n.
Original entry on oeis.org
0, 100, 2250, 30000, 312500, 2812500, 22968750, 175000000, 1265625000, 8789062500, 59082031250, 386718750000, 2475585937500, 15551757812500, 96130371093750, 585937500000000, 3527832031250000, 21011352539062500
Offset: 1
-
[(n^3-n^2)*5^n: n in [1..30]]; // Vincenzo Librandi, Oct 26 2011
-
Table[(n^3-n^2)5^n,{n,20}] (* or *) LinearRecurrence[{20,-150,500,-625},{0,100,2250,30000},20]
A116144
a(n) = 4^n * n*(n+1).
Original entry on oeis.org
0, 8, 96, 768, 5120, 30720, 172032, 917504, 4718592, 23592960, 115343360, 553648128, 2617245696, 12213813248, 56371445760, 257698037760, 1168231104512, 5257039970304, 23502061043712, 104453604638720, 461794883665920
Offset: 0
-
List([0..30], n-> 4^n*n*(n+1)); # G. C. Greubel, May 10 2019
-
[(n^2+n)*4^n: n in [0..30]]; // Vincenzo Librandi, Feb 28 2013
-
I:=[0,8,96]; [n le 3 select I[n] else 12*Self(n-1)-48*Self(n-2)+64*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Feb 28 2013
-
Table[(n^2 + n)*4^n, {n, 0, 30}] (* Vincenzo Librandi, Feb 28 2013 *)
LinearRecurrence[{12,-48,64},{0,8,96},30] (* Harvey P. Dale, Feb 27 2015 *)
-
a(n)=(n^2+n)*4^n \\ Charles R Greathouse IV, Feb 28 2013
-
[4^n*n*(n+1) for n in (0..30)] # G. C. Greubel, May 10 2019
A116156
a(n) = 5^n * n*(n + 1).
Original entry on oeis.org
0, 10, 150, 1500, 12500, 93750, 656250, 4375000, 28125000, 175781250, 1074218750, 6445312500, 38085937500, 222167968750, 1281738281250, 7324218750000, 41503906250000, 233459472656250, 1304626464843750, 7247924804687500
Offset: 0
-
List([0..30], n-> 5^n*n*(n+1)); # G. C. Greubel, May 10 2019
-
[(n^2+n)*5^n: n in [0..30]]; // Vincenzo Librandi, Feb 28 2013
-
I:=[0,10,150]; [n le 3 select I[n] else 15*Self(n-1)-75*Self(n-2)+125*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Feb 28 2013
-
Table[(n^2 + n) 5^n, {n, 0, 30}] (* or *) CoefficientList[Series[10 x/(1 - 5 x)^3, {x, 0, 30}], x](* Vincenzo Librandi, Feb 28 2013 *)
-
a(n)=(n^2+n)*5^n \\ Charles R Greathouse IV, Feb 28 2013
-
[5^n*n*(n+1) for n in (0..30)] # G. C. Greubel, May 10 2019
A116164
a(n) = 6^n * n*(n+1).
Original entry on oeis.org
0, 12, 216, 2592, 25920, 233280, 1959552, 15676416, 120932352, 906992640, 6651279360, 47889211392, 339578044416, 2377046310912, 16456474460160, 112844396298240, 767341894828032, 5179557790089216, 34733505180598272
Offset: 0
-
List([0..30], n-> 6^n*n*(n+1) ); # G. C. Greubel, May 10 2019
-
[(n^2+n)*6^n: n in [0..30]]; // Vincenzo Librandi, Feb 28 2013
-
I:=[0,12,216]; [n le 3 select I[n] else 18*Self(n-1)-108*Self(n-2)+216*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Feb 28 2013
-
Table[(n^2 + n) 6^n, {n, 0, 30}] (* or *) CoefficientList[Series[12 x/(1 - 6 x)^3, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 28 2013 *)
-
a(n)=(n^2+n)*6^n \\ Charles R Greathouse IV, Feb 28 2013
-
[6^n*n*(n+1) for n in (0..30)] # G. C. Greubel, May 10 2019
A116165
a(n) = 7^n * n*(n+1).
Original entry on oeis.org
0, 14, 294, 4116, 48020, 504210, 4941258, 46118408, 415065672, 3631824630, 31072277390, 261007130076, 2159240803356, 17633799894074, 142426845298290, 1139414762386320, 9039357114931472, 71184937280085342, 556917450485373558
Offset: 0
-
List([0..30], n-> 7^n*n*(n+1)); # G. C. Greubel, May 11 2019
-
[(n^2+n)*7^n: n in [0..30]]; // Vincenzo Librandi, Feb 28 2013
-
I:=[0,14,294]; [n le 3 select I[n] else 21*Self(n-1)-147*Self(n-2)+343*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Feb 28 2013
-
Table[(n^2 + n) 7^n, {n, 0, 30}] (* Vincenzo Librandi, Feb 28 2013 *)
-
a(n)=(n^2+n)*7^n \\ Charles R Greathouse IV, Feb 28 2013
-
[7^n*n*(n+1) for n in (0..30)] # G. C. Greubel, May 11 2019
A116166
a(n) = 8^n * n*(n+1).
Original entry on oeis.org
0, 16, 384, 6144, 81920, 983040, 11010048, 117440512, 1207959552, 12079595520, 118111600640, 1133871366144, 10720238370816, 100055558127616, 923589767331840, 8444249301319680, 76561193665298432, 689050742987685888
Offset: 0
-
List([0..30], n-> 8^n*n*(n+1)); # G. C. Greubel, May 11 2019
-
[(n^2+n)*8^n: n in [0..30]]; // Vincenzo Librandi, Feb 28 2013
-
Table[(n^2 + n) 8^n, {n, 0, 30}] (* Harvey P. Dale, Mar 09 2011 *)
CoefficientList[Series[16 x/(1 - 8 x)^3, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 28 2013 *)
-
a(n)=(n^2+n)*8^n \\ Charles R Greathouse IV, Feb 28 2013
-
[8^n*n*(n+1) for n in (0..30)] # G. C. Greubel, May 11 2019
A116176
a(n) = 9^n * n*(n+1).
Original entry on oeis.org
0, 18, 486, 8748, 131220, 1771470, 22320522, 267846264, 3099363912, 34867844010, 383546284110, 4142299868388, 44059007691036, 462619580755878, 4804126415541810, 49413871702715760, 504021491367700752
Offset: 0
A119635
a(n) = n*(1 + n^2)*2^n.
Original entry on oeis.org
4, 40, 240, 1088, 4160, 14208, 44800, 133120, 377856, 1034240, 2748416, 7127040, 18104320, 45187072, 111083520, 269484032, 646184960, 1533542400, 3606052864, 8409579520, 19465764864, 44753223680, 102257131520, 232330887168
Offset: 1
-
List([1..30],n->n*(n^2+1)*2^n); # Muniru A Asiru, Mar 04 2019
-
[(n^3 + n)*2^n: n in [1..30]]; // Vincenzo Librandi, Feb 22 2013
-
[(n^3+n)*2^n$n=1..30]; # Muniru A Asiru, Mar 04 2019
-
Table[(n^3 + n)*2^n, {n, 30}] (* or *) CoefficientList[Series[4(1 +2x + 4x^2)/(1-2x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 22 2013 *)
-
{a(n) = n*(1+n^2)*2^n}; \\ G. C. Greubel, Mar 04 2019
-
[n*(1+n^2)*2^n for n in (1..30)] # G. C. Greubel, Mar 04 2019