cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A168251 a(n) = n^2 if n is odd, n^2*2^(n-2) if n is even.

Original entry on oeis.org

0, 1, 4, 9, 64, 25, 576, 49, 4096, 81, 25600, 121, 147456, 169, 802816, 225, 4194304, 289, 21233664, 361, 104857600, 441, 507510784, 529, 2415919104, 625, 11341398016, 729, 52613349376, 841, 241591910400, 961, 1099511627776, 1089, 4964982194176, 1225
Offset: 0

Views

Author

Paul Curtz, Nov 21 2009

Keywords

Comments

This is the main diagonal of the following array defined by T(n,2k+1) = A168077(k) for odd column indices and T(n,2k) = A168077(2k)*2^n for even column indices:
0, 1, 1, 9, 4, 25, ... A168077
0, 1, 2, 9, 8, 25, ... A129194
0, 1, 4, 9, 16,25, ... A000290
0, 1, 8, 9, 32,25, ...
0, 1, 16,9, 64,25, ... A154615

Programs

  • Magma
    [(n^2)*2^((n-2)*(1+(-1)^n) div 2): n in [0..40]]; // Vincenzo Librandi, Jul 17 2016
  • Maple
    A168251 := proc(n)
            if type(n,'even') then
                    n^2*2^n/4 ;
            else
                    n^2 ;
            end if;
    end proc: # R. J. Mathar, Sep 20 2011
  • Mathematica
    Table[(n^2)*2^((n - 2)*(1 + (-1)^n)/2), {n, 0, 50}] (* G. C. Greubel, Jul 16 2016 *)
    Table[If[OddQ[n],n^2,n^2 2^(n-2)],{n,0,50}] (* or *) LinearRecurrence[{0,15,0,-87,0,245,0,-348,0,240,0,-64},{0,1,4,9,64,25,576,49,4096,81,25600,121},41] (* Harvey P. Dale, May 14 2022 *)

Formula

a(2n) = A128782(n). a(2n+1) = A016754(n).
a(n) = +15*a(n-2) -87*a(n-4) +245*a(n-6) -348*a(n-8) +240*a(n-10) - 64*a(n-12).
G.f.: x*(1 + 4*x - 6*x^2 + 4*x^3 - 23*x^4 - 36*x^5 + 212*x^6 + 44*x^7 - 336*x^8 - 16*x^9 - 64*x^10) / ( (1-x)^3*(2*x+1)^3*(1-2*x)^3*(1+x)^3 ). - R. J. Mathar, Sep 20 2011
a(n) = (n^2)*2^((n-2)*(1+(-1)^n)/2). - Luce ETIENNE, Feb 03 2015

A290168 If n is even then a(n) = n^2*(n+2)/8, otherwise a(n) = (n-1)*n*(n+1)/8.

Original entry on oeis.org

0, 0, 2, 3, 12, 15, 36, 42, 80, 90, 150, 165, 252, 273, 392, 420, 576, 612, 810, 855, 1100, 1155, 1452, 1518, 1872, 1950, 2366, 2457, 2940, 3045, 3600, 3720, 4352, 4488, 5202, 5355, 6156, 6327, 7220, 7410, 8400
Offset: 0

Views

Author

Keywords

Comments

Bisection of a(n) [0, 2, 12, 36, 80, 150, 252, ...] is A011379.
Bisection [0, 3, 15, 42, 90, 165, 273, ...] is A059270.
Considering s(n) = [0, 0, 0, 0, 1, 1, 3, 3, 6, 6, 10, 10, 15, 15, ...] (triangular numbers repeated - see A008805), a(n) = n*s(n+2) holds.
Considering the first differences of a(n), b(n) = [0, 2, 1 , 9, 3, 21, 6, 38, 10, 60, 15, 87, ...], b(n) shows bisections A000217 and A005476. In addition, b(n) begins like A249264 up to 12th term, and is an alternation of 4 multiples of 3 and 2 not multiples; b(n) is also such that b(2n) + b(2n+1) = A049450(n).
Considering the second differences c(n), c(n) shows bisections A001105(n+1) and -A000384(n+1), c(n) has 3 consecutive terms multiples of 3 alternating with 3 not multiples; in addition, c(2n) + c(2n+1) = A000027(n).
Considering a(n)/c(n) = [0, 0, 1/4, -1/2, 2/3, -1, 9/8, -3/2, 8/5, -2, 25/12, -5/2, ...], it appears that it is A129194(n)/A022998(n+1) and -A026741(n)/A000034(n) alternating.

Crossrefs

Programs

  • Mathematica
    a[n_] := If[EvenQ[n], n^2*(n + 2)/8, (n - 1)*n*(n + 1)/8]; Table[a[n], {n, 0, 40}]
  • PARI
    a(n) = if(n%2==0, n^2*(n+2)/8, (n-1)*n*(n+1)/8) \\ Felix Fröhlich, Jul 23 2017

Formula

G.f.: x^2*(2 + x + 3*x^2)/((x-1)^4*(x+1)^3).
a(n) = (1/16)*(-1)^n*n*(1 + (-1)^(n+1) + 2*(1 + (-1)^n)*n + 2*(-1)^n*n^2).
Sum_{n>=2} 1/a(n) = 5 + Pi^2/6 - 8*log(2). - Amiram Eldar, Sep 17 2022

A168037 Period length 18: repeat 0,1,2,0,8,7,0,4,5,0,5,4,0,7,8,0,2,1.

Original entry on oeis.org

0, 1, 2, 0, 8, 7, 0, 4, 5, 0, 5, 4, 0, 7, 8, 0, 2, 1, 0, 1, 2, 0, 8, 7, 0, 4, 5, 0, 5, 4, 0, 7, 8, 0, 2, 1, 0, 1, 2, 0, 8, 7, 0, 4, 5, 0, 5, 4, 0, 7, 8, 0, 2, 1
Offset: 0

Views

Author

Paul Curtz, Nov 17 2009

Keywords

Comments

Represents also the decimal expansion of 447668335336223/37037037037037037.

Crossrefs

Cf. A154811.

Programs

  • Mathematica
    PadRight[{},60,{0,1,2,0,8,7,0,4,5,0,5,4,0,7,8,0,2,1}] (* Harvey P. Dale, Jan 17 2021 *)

Formula

a(n) = A129194(n) mod 9.
a(n) = a(n-18).
a(n+1) = a(17-n), 0<=n<= 16, palindromic.
G.f. ( -x*(1+2*x+8*x^3+7*x^4+4*x^6+5*x^7+5*x^9+4*x^10+7*x^12+8*x^13+2*x^15+x^16) ) / ( (x-1)*(1+x+x^2)*(1+x^3+x^6)*(1+x)*(1-x+x^2)*(1-x^3+x^6) ). - R. J. Mathar, Jan 22 2011
Previous Showing 11-13 of 13 results.