A382335
Expansion of ( 1 + 4 * Sum_{k>=0} x^(2^k)/(1 - x^(2^k))^2 )^(1/2).
Original entry on oeis.org
1, 2, 4, -2, 10, -2, -20, 82, -108, -114, 1052, -2702, 2054, 11394, -52636, 99534, 32938, -831698, 2649676, -3119694, -8779530, 54334130, -125649628, 31877726, 849214460, -3274210670, 5129552132, 7097067566, -65583106070, 180299051838, -133300439300
Offset: 0
A382336
Expansion of ( 1 + 9 * Sum_{k>=0} x^(2^k)/(1 - x^(2^k))^2 )^(1/3).
Original entry on oeis.org
1, 3, 0, 0, 21, -111, 504, -2004, 7092, -21150, 43614, 24288, -949878, 7022118, -38308320, 175670820, -691787607, 2250673143, -4994247456, -2841846468, 120496073523, -931900270923, 5282041372722, -25033533979260, 101401747872534, -337523450786736, 757180705527738
Offset: 0
A328154
G.f. A(x) satisfies: A(x) = A(x^2) + x / (1 + x)^2.
Original entry on oeis.org
1, -1, 3, -5, 5, -3, 7, -13, 9, -5, 11, -15, 13, -7, 15, -29, 17, -9, 19, -25, 21, -11, 23, -39, 25, -13, 27, -35, 29, -15, 31, -61, 33, -17, 35, -45, 37, -19, 39, -65, 41, -21, 43, -55, 45, -23, 47, -87, 49, -25, 51, -65, 53, -27, 55, -91, 57, -29, 59, -75, 61, -31, 63, -125, 65
Offset: 1
-
a:=[1]; for k in [1..65] do if IsOdd(k) then a[k]:=k; else a[k]:=a[k div 2]-k; end if; end for; a; // Marius A. Burtea, Oct 07 2019
-
nmax = 65; CoefficientList[Series[Sum[x^(2^k)/(1 + x^(2^k))^2, {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x] // Rest
nmax = 65; CoefficientList[Series[Sum[(-1)^(k + 1) EulerPhi[2 k] x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
a[n_] := If[EvenQ[n], a[n/2] - n, n]; Table[a[n], {n, 1, 65}]
-
a(n) = if (n==1, 1, if (n % 2, n, a(n/2) - n)); \\ Michel Marcus, Oct 07 2019
-
a(n) = 3*(n>>valuation(n,2)) - n<<1; \\ Kevin Ryde, Oct 06 2020
A328969
Irregular table T(n,k), n >= 2, k=1..pi(n). arising in expressing the sequence A006022 as the coefficients depending on the maximal k-th prime factor pk of the formula for A006022(n) of its unique prime factor equation.
Original entry on oeis.org
1, 0, 1, 3, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 1, 7, 0, 0, 0, 0, 4, 0, 0, 5, 0, 1, 0, 0, 0, 0, 0, 1, 9, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 7, 0, 0, 1, 0, 0, 0, 5, 1, 0, 0, 0, 15, 0, 0, 0, 0, 0
Offset: 2
First few rows are:
1;
0, 1;
3, 0;
0, 0, 1;
3, 1, 0;
0, 0, 0, 1;
7, 0, 0, 0;
0, 4, 0, 0;
5, 0, 1, 0;
0, 0, 0, 0, 1;
...
Examples (see the p_k formulas)
T(2^3,1) = (2^3-1) / (2-1) = 7
T(3^2,1) = (3^2-1) / (3-1) = 4
T(3*2,2) = (6/(2*3)) * (3^2-1) / (3-1) = 4
T(12,1) = (12/(2^2)) * (2^2-1) / (2-1) = 9
T(12,2) = (12/(2^2*3)) * (3-1) / (3-1) = 1
T(15,2) = (15/3) * (3-1) / (3-1) = 5
T(15,3) = (15/(2^2*3)) * (3-1) / (3-1) = 1
T(2*3*5^2*7,3) = (2*3*5^2*7/(2*3*5^2)) * (5^2-1) / (5-1) = 42
A335115
a(2*n) = 2*n - a(n), a(2*n+1) = 2*n + 1.
Original entry on oeis.org
1, 1, 3, 3, 5, 3, 7, 5, 9, 5, 11, 9, 13, 7, 15, 11, 17, 9, 19, 15, 21, 11, 23, 15, 25, 13, 27, 21, 29, 15, 31, 21, 33, 17, 35, 27, 37, 19, 39, 25, 41, 21, 43, 33, 45, 23, 47, 33, 49, 25, 51, 39, 53, 27, 55, 35, 57, 29, 59, 45, 61, 31, 63, 43, 65, 33, 67, 51, 69, 35, 71, 45, 73, 37, 75
Offset: 1
-
a[n_] := a[n] = If[EvenQ[n], n - a[n/2], n]; Table[a[n], {n, 1, 75}]
nmax = 75; CoefficientList[Series[Sum[(-1)^k x^(2^k)/(1 - x^(2^k))^2, {k, 0, Floor[Log[2, nmax]]}], {x, 0, nmax}], x] // Rest
f[p_, e_] := If[p == 2, (2^(e + 1) + (-1)^e)/3, p^e]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 02 2020 *)
-
a(n) = my(k=valuation(n,2)); (n<<1 + (n>>k)*(-1)^k)/3; \\ Kevin Ryde, Oct 06 2020
A338046
G.f.: Sum_{k>=0} x^(2^k) / (1 - x^(2^k))^4.
Original entry on oeis.org
1, 5, 10, 25, 35, 66, 84, 145, 165, 255, 286, 430, 455, 644, 680, 961, 969, 1305, 1330, 1795, 1771, 2310, 2300, 3030, 2925, 3731, 3654, 4704, 4495, 5640, 5456, 6945, 6545, 8109, 7770, 9741, 9139, 11210, 10660, 13275, 12341, 15015, 14190, 17490, 16215, 19596, 18424, 22630
Offset: 1
-
nmax = 48; CoefficientList[Series[Sum[x^(2^k) /(1 - x^(2^k))^4, {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x] // Rest
a[n_] := If[EvenQ[n], a[n/2] + n (n + 1) (n + 2)/6, n (n + 1) (n + 2)/6]; Table[a[n], {n, 1, 48}]
Table[(1/6) DivisorSum[n, Boole[IntegerQ[Log[2, n/#]]] # (# + 1) (# + 2) &], {n, 1, 48}]
A373186
Expansion of Sum_{k>=0} x^(3^k) / (1 - x^(3^k))^3.
Original entry on oeis.org
1, 3, 7, 10, 15, 24, 28, 36, 52, 55, 66, 88, 91, 105, 135, 136, 153, 195, 190, 210, 259, 253, 276, 336, 325, 351, 430, 406, 435, 520, 496, 528, 627, 595, 630, 754, 703, 741, 871, 820, 861, 1008, 946, 990, 1170, 1081, 1128, 1312, 1225, 1275, 1479, 1378, 1431, 1680, 1540
Offset: 1
A373397
Expansion of Sum_{k>=0} x^(6^k) / (1 - x^(6^k))^2.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 7, 8, 9, 10, 11, 14, 13, 14, 15, 16, 17, 21, 19, 20, 21, 22, 23, 28, 25, 26, 27, 28, 29, 35, 31, 32, 33, 34, 35, 43, 37, 38, 39, 40, 41, 49, 43, 44, 45, 46, 47, 56, 49, 50, 51, 52, 53, 63, 55, 56, 57, 58, 59, 70, 61, 62, 63, 64, 65, 77, 67, 68, 69, 70, 71, 86, 73, 74, 75, 76, 77, 91
Offset: 1
A188023
Triangle read by rows, T(n,k) = k*A115361(n-1,k-1).
Original entry on oeis.org
1, 1, 2, 0, 0, 3, 1, 2, 0, 4, 0, 0, 0, 0, 5, 0, 0, 3, 0, 0, 6, 0, 0, 0, 0, 0, 0, 7, 1, 2, 0, 4, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 5, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 3, 0, 0, 6, 0, 0, 0, 0, 0, 12
Offset: 1
First few rows of the triangle =
1
1, 2
0, 0, 3
1, 2, 0, 4
0, 0, 0, 0, 5
0, 0, 3, 0, 0, 6
0, 0, 0, 0, 0, 0, 7
1, 2, 0, 4, 0, 0, 0, 8
0, 0, 0, 0, 0, 0, 0, 0, 9
0, 0, 0, 0, 5, 0, 0, 0, 0, 10
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11
0, 0, 3, 0, 0, 6, 0, 0, 0, 0, 0, 12
...
A334070
Number of even-order elements in the multiplicative group of integers modulo n.
Original entry on oeis.org
0, 0, 1, 1, 3, 1, 3, 3, 3, 3, 5, 3, 9, 3, 7, 7, 15, 3, 9, 7, 9, 5, 11, 7, 15, 9, 9, 9, 21, 7, 15, 15, 15, 15, 21, 9, 27, 9, 21, 15, 35, 9, 21, 15, 21, 11, 23, 15, 21, 15, 31, 21, 39, 9, 35, 21, 27, 21, 29, 15, 45, 15, 27, 31, 45, 15, 33, 31, 33, 21, 35, 21, 63
Offset: 1
For n = 10, the elements of (Z_n)^x with even order are 3 (order 4), 7 (order 4), and 9 (order 2). Thus, a(10) = 3.
-
a:= n-> (t-> t-t/2^padic[ordp](t, 2))(numtheory[phi](n)):
seq(a(n), n=1..80); # Alois P. Heinz, Apr 14 2020
-
a[n_] := Length@
Select[Range[n] - 1, EvenQ[MultiplicativeOrder[#, n]] &];
oddPart[n_] := n/2^IntegerExponent[n,2];
a[n_] := EulerPhi[n] - oddPart[EulerPhi[n]];
Comments