cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A382335 Expansion of ( 1 + 4 * Sum_{k>=0} x^(2^k)/(1 - x^(2^k))^2 )^(1/2).

Original entry on oeis.org

1, 2, 4, -2, 10, -2, -20, 82, -108, -114, 1052, -2702, 2054, 11394, -52636, 99534, 32938, -831698, 2649676, -3119694, -8779530, 54334130, -125649628, 31877726, 849214460, -3274210670, 5129552132, 7097067566, -65583106070, 180299051838, -133300439300
Offset: 0

Views

Author

Seiichi Manyama, Mar 22 2025

Keywords

Crossrefs

Formula

G.f. A(x) satisfies A(x) = ( A(x^2)^2 + 4*x/(1-x)^2 )^(1/2).

A382336 Expansion of ( 1 + 9 * Sum_{k>=0} x^(2^k)/(1 - x^(2^k))^2 )^(1/3).

Original entry on oeis.org

1, 3, 0, 0, 21, -111, 504, -2004, 7092, -21150, 43614, 24288, -949878, 7022118, -38308320, 175670820, -691787607, 2250673143, -4994247456, -2841846468, 120496073523, -931900270923, 5282041372722, -25033533979260, 101401747872534, -337523450786736, 757180705527738
Offset: 0

Views

Author

Seiichi Manyama, Mar 22 2025

Keywords

Crossrefs

Formula

G.f. A(x) satisfies A(x) = ( A(x^2)^3 + 9*x/(1-x)^2 )^(1/3).

A328154 G.f. A(x) satisfies: A(x) = A(x^2) + x / (1 + x)^2.

Original entry on oeis.org

1, -1, 3, -5, 5, -3, 7, -13, 9, -5, 11, -15, 13, -7, 15, -29, 17, -9, 19, -25, 21, -11, 23, -39, 25, -13, 27, -35, 29, -15, 31, -61, 33, -17, 35, -45, 37, -19, 39, -65, 41, -21, 43, -55, 45, -23, 47, -87, 49, -25, 51, -65, 53, -27, 55, -91, 57, -29, 59, -75, 61, -31, 63, -125, 65
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 05 2019

Keywords

Crossrefs

Programs

  • Magma
    a:=[1]; for k in [1..65] do if IsOdd(k) then a[k]:=k; else a[k]:=a[k div 2]-k; end if;  end for; a; // Marius A. Burtea, Oct 07 2019
    
  • Mathematica
    nmax = 65; CoefficientList[Series[Sum[x^(2^k)/(1 + x^(2^k))^2, {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x] // Rest
    nmax = 65; CoefficientList[Series[Sum[(-1)^(k + 1) EulerPhi[2 k] x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    a[n_] := If[EvenQ[n], a[n/2] - n, n]; Table[a[n], {n, 1, 65}]
  • PARI
    a(n) = if (n==1, 1, if (n % 2, n, a(n/2) - n)); \\ Michel Marcus, Oct 07 2019
    
  • PARI
    a(n) = 3*(n>>valuation(n,2)) - n<<1; \\ Kevin Ryde, Oct 06 2020

Formula

G.f.: Sum_{k>=0} x^(2^k) / (1 + x^(2^k))^2.
G.f.: Sum_{k>=1} (-1)^(k + 1) * phi(2*k) * x^k / (1 - x^k), where phi = A000010.
a(2*n) = a(n) - 2*n, a(2*n+1) = 2*n + 1.
From Werner Schulte, Oct 05 2020: (Start)
Multiplicative with a(2^e) = 3 - 2^(e+1) and a(p^e) = p^e for e >= 0 and prime p > 2.
Dirichlet g. f.: Sum_{n>0} a(n)/n^s = zeta(s-1) * (1-3/(2^s-1)). (End)

A328969 Irregular table T(n,k), n >= 2, k=1..pi(n). arising in expressing the sequence A006022 as the coefficients depending on the maximal k-th prime factor pk of the formula for A006022(n) of its unique prime factor equation.

Original entry on oeis.org

1, 0, 1, 3, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 1, 7, 0, 0, 0, 0, 4, 0, 0, 5, 0, 1, 0, 0, 0, 0, 0, 1, 9, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 7, 0, 0, 1, 0, 0, 0, 5, 1, 0, 0, 0, 15, 0, 0, 0, 0, 0
Offset: 2

Views

Author

Jonathan Blanchette, Nov 01 2019

Keywords

Comments

The length of the n-th row is pi(n) (A000720), i.e., 1,2,2,3,... for n>2.
The sum of the rows equals the sequence A006022.
When n is prime the entire row is 0 except at p=n where T(p,p)=1.

Examples

			First few rows are:
  1;
  0, 1;
  3, 0;
  0, 0, 1;
  3, 1, 0;
  0, 0, 0, 1;
  7, 0, 0, 0;
  0, 4, 0, 0;
  5, 0, 1, 0;
  0, 0, 0, 0, 1;
  ...
Examples (see the p_k formulas)
T(2^3,1) = (2^3-1) / (2-1) = 7
T(3^2,1) = (3^2-1) / (3-1) = 4
T(3*2,2) = (6/(2*3)) * (3^2-1) / (3-1) = 4
T(12,1) = (12/(2^2)) * (2^2-1) / (2-1) = 9
T(12,2) = (12/(2^2*3)) * (3-1) / (3-1) = 1
T(15,2) = (15/3) * (3-1) / (3-1) = 5
T(15,3) = (15/(2^2*3)) * (3-1) / (3-1) = 1
T(2*3*5^2*7,3) = (2*3*5^2*7/(2*3*5^2)) * (5^2-1) / (5-1) = 42
		

Crossrefs

The rows sum to A006022. Cf. A129527 (first column).

Formula

Let p_k be the k-th prime, where k is the column index, p_k <= n, and n >= 2, and m_k is the multiplicity of p_k occurring in n:
T(n,p_k) = n * 1/(p_1^m_1*p_2^m_2*...*p_k^m_k) * (p_k^m_k-1)/(p_k-1), if p_k divides n;
T(n,p_k) = 0; if p_k does not divide n.
T(2*n,2) = A129527(n); T(2*n+1,2) = 0.

A335115 a(2*n) = 2*n - a(n), a(2*n+1) = 2*n + 1.

Original entry on oeis.org

1, 1, 3, 3, 5, 3, 7, 5, 9, 5, 11, 9, 13, 7, 15, 11, 17, 9, 19, 15, 21, 11, 23, 15, 25, 13, 27, 21, 29, 15, 31, 21, 33, 17, 35, 27, 37, 19, 39, 25, 41, 21, 43, 33, 45, 23, 47, 33, 49, 25, 51, 39, 53, 27, 55, 35, 57, 29, 59, 45, 61, 31, 63, 43, 65, 33, 67, 51, 69, 35, 71, 45, 73, 37, 75
Offset: 1

Views

Author

Ilya Gutkovskiy, May 23 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = If[EvenQ[n], n - a[n/2], n]; Table[a[n], {n, 1, 75}]
    nmax = 75; CoefficientList[Series[Sum[(-1)^k x^(2^k)/(1 - x^(2^k))^2, {k, 0, Floor[Log[2, nmax]]}], {x, 0, nmax}], x] // Rest
    f[p_, e_] := If[p == 2, (2^(e + 1) + (-1)^e)/3, p^e]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 02 2020 *)
  • PARI
    a(n) = my(k=valuation(n,2)); (n<<1 + (n>>k)*(-1)^k)/3; \\ Kevin Ryde, Oct 06 2020

Formula

G.f.: Sum_{k>=0} (-1)^k * x^(2^k) / (1 - x^(2^k))^2.
G.f. A(x) satisfies: A(x) = x / (1 - x)^2 - A(x^2).
Dirichlet g.f.: zeta(s-1) / (1 + 2^(-s)).
a(n) = Sum_{d|n} A154269(n/d) * d.
Sum_{k=1..n} a(k) ~ 2*n^2/5. - Vaclav Kotesovec, Jun 11 2020
Multiplicative with a(2^e) = A001045(e+1) and a(p^e) = p^e for e >= 0 and prime p > 2. - Werner Schulte, Oct 05 2020

A338046 G.f.: Sum_{k>=0} x^(2^k) / (1 - x^(2^k))^4.

Original entry on oeis.org

1, 5, 10, 25, 35, 66, 84, 145, 165, 255, 286, 430, 455, 644, 680, 961, 969, 1305, 1330, 1795, 1771, 2310, 2300, 3030, 2925, 3731, 3654, 4704, 4495, 5640, 5456, 6945, 6545, 8109, 7770, 9741, 9139, 11210, 10660, 13275, 12341, 15015, 14190, 17490, 16215, 19596, 18424, 22630
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 08 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 48; CoefficientList[Series[Sum[x^(2^k) /(1 - x^(2^k))^4, {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x] // Rest
    a[n_] := If[EvenQ[n], a[n/2] + n (n + 1) (n + 2)/6, n (n + 1) (n + 2)/6]; Table[a[n], {n, 1, 48}]
    Table[(1/6) DivisorSum[n, Boole[IntegerQ[Log[2, n/#]]] # (# + 1) (# + 2) &], {n, 1, 48}]

Formula

G.f. A(x) satisfies: A(x) = A(x^2) + x / (1 - x)^4.
a(2*n) = a(n) + A002492(n), a(2*n+1) = A000447(n+1).
a(n) = (1/6) * Sum_{d|n} A209229(n/d) * d * (d + 1) * (d + 2).
Product_{n>=1} (1 + x^n)^a(n) = g.f. for A000335.

A373186 Expansion of Sum_{k>=0} x^(3^k) / (1 - x^(3^k))^3.

Original entry on oeis.org

1, 3, 7, 10, 15, 24, 28, 36, 52, 55, 66, 88, 91, 105, 135, 136, 153, 195, 190, 210, 259, 253, 276, 336, 325, 351, 430, 406, 435, 520, 496, 528, 627, 595, 630, 754, 703, 741, 871, 820, 861, 1008, 946, 990, 1170, 1081, 1128, 1312, 1225, 1275, 1479, 1378, 1431, 1680, 1540
Offset: 1

Views

Author

Seiichi Manyama, May 27 2024

Keywords

Crossrefs

Formula

G.f. A(x) satisfies A(x) = x/(1 - x)^3 + A(x^3).
a(3*n+1) = A000217(3*n+1), a(3*n+2) = A000217(3*n+2) and a(3*n+3) = A000217(3*n+3) + a(n+1) for n >= 0.

A373397 Expansion of Sum_{k>=0} x^(6^k) / (1 - x^(6^k))^2.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 7, 8, 9, 10, 11, 14, 13, 14, 15, 16, 17, 21, 19, 20, 21, 22, 23, 28, 25, 26, 27, 28, 29, 35, 31, 32, 33, 34, 35, 43, 37, 38, 39, 40, 41, 49, 43, 44, 45, 46, 47, 56, 49, 50, 51, 52, 53, 63, 55, 56, 57, 58, 59, 70, 61, 62, 63, 64, 65, 77, 67, 68, 69, 70, 71, 86, 73, 74, 75, 76, 77, 91
Offset: 1

Views

Author

Seiichi Manyama, Jun 04 2024

Keywords

Crossrefs

Formula

G.f. A(x) satisfies A(x) = x/(1 - x)^2 + A(x^6).
If n == 0 (mod 6), a(n) = n + a(n/6) otherwise a(n) = n.

A188023 Triangle read by rows, T(n,k) = k*A115361(n-1,k-1).

Original entry on oeis.org

1, 1, 2, 0, 0, 3, 1, 2, 0, 4, 0, 0, 0, 0, 5, 0, 0, 3, 0, 0, 6, 0, 0, 0, 0, 0, 0, 7, 1, 2, 0, 4, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 5, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 3, 0, 0, 6, 0, 0, 0, 0, 0, 12
Offset: 1

Views

Author

Gary W. Adamson, Mar 19 2011

Keywords

Comments

Triangle obtained by multiplying the lower triangular matrices A115361 and A127648.

Examples

			First few rows of the triangle =
1
1, 2
0, 0, 3
1, 2, 0, 4
0, 0, 0, 0, 5
0, 0, 3, 0, 0, 6
0, 0, 0, 0, 0, 0, 7
1, 2, 0, 4, 0, 0, 0, 8
0, 0, 0, 0, 0, 0, 0, 0, 9
0, 0, 0, 0, 5, 0, 0, 0, 0, 10
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11
0, 0, 3, 0, 0, 6, 0, 0, 0, 0, 0, 12
...
		

Crossrefs

Cf. A115361, A127648, A129527 (row sums)

A334070 Number of even-order elements in the multiplicative group of integers modulo n.

Original entry on oeis.org

0, 0, 1, 1, 3, 1, 3, 3, 3, 3, 5, 3, 9, 3, 7, 7, 15, 3, 9, 7, 9, 5, 11, 7, 15, 9, 9, 9, 21, 7, 15, 15, 15, 15, 21, 9, 27, 9, 21, 15, 35, 9, 21, 15, 21, 11, 23, 15, 21, 15, 31, 21, 39, 9, 35, 21, 27, 21, 29, 15, 45, 15, 27, 31, 45, 15, 33, 31, 33, 21, 35, 21, 63
Offset: 1

Views

Author

Robert A. Jones, Apr 13 2020

Keywords

Comments

The number of even-order elements in a finite abelian group G is |G| - b(|G|), where b is given by A000265. To see this, decompose G as a product of cyclic groups of orders {m_k}. G has [prod_k b(m_k)] elements of odd order, since an element has odd order if and only if all its components have odd order, and each C_m factor has b(m) elements of odd order. Since b can be pulled outside the product, G has b(|G|) elements of odd order. Using that the order of (Z/nZ)^x is phi(n), we obtain a(n) = phi(n) - b(phi(n)).
Since phi(n) is even when n > 2, a(n) is odd when n > 2.

Examples

			For n = 10, the elements of (Z_n)^x with even order are 3 (order 4), 7 (order 4), and 9 (order 2). Thus, a(10) = 3.
		

Crossrefs

Cf. A000010, A053575, A129527, A331739 (number of even-order elements in Z_n).

Programs

  • Maple
    a:= n-> (t-> t-t/2^padic[ordp](t, 2))(numtheory[phi](n)):
    seq(a(n), n=1..80);  # Alois P. Heinz, Apr 14 2020
  • Mathematica
    a[n_] := Length@
      Select[Range[n] - 1, EvenQ[MultiplicativeOrder[#, n]] &];
    oddPart[n_] := n/2^IntegerExponent[n,2];
    a[n_] := EulerPhi[n] - oddPart[EulerPhi[n]];

Formula

a(n) = A000010(n) - A053575(n) = A331739(A000010(n)).
Previous Showing 21-30 of 30 results.