cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A067080 If n = ab...def in decimal notation then the left digitorial function Ld(n) = ab...def*ab...de*ab...d*...*ab*a.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 250, 255, 260, 265, 270, 275, 280, 285, 290, 295, 360, 366, 372
Offset: 1

Views

Author

Amarnath Murthy, Jan 05 2002

Keywords

Comments

This entry should probably start at n=0, just as A067079 does. But that would require a number of changes, so it can wait until the editors have more free time. - N. J. A. Sloane, Nov 29 2014

Examples

			Ld(256) = 256*25*2 =12800.
a(31)=floor(31/10^0)*floor(31/10^1)=31*3=93;
a(42)=168 since 42=42(base-10) and so a(42)=42*4(base-10)=42*4=168.
		

Crossrefs

For formulas regarding a general parameter p (i.e. terms floor(n/p^k)) see A132264.
For the product of terms floor(n/p^k) for p=2 to p=12 see A098844(p=2), A132027(p=3)-A132033(p=9), A132263(p=11), A132264(p=12).
For the products of terms 1+floor(n/p^k) see A132269-A132272, A132327, A132328.

Programs

  • Haskell
    a067080 n = if n <= 9 then n else n * a067080 (n `div` 10)
    -- Reinhard Zumkeller, Nov 29 2012
  • Mathematica
    Table[d = IntegerDigits[n]; rd = 1; While[ Length[d] > 0, rd = rd*FromDigits[d]; d = Drop[d, -1]]; rd, {n, 1, 75} ]
    Table[Times@@NestList[Quotient[#,10]&,n,IntegerLength[n]-1],{n,70}] (* Harvey P. Dale, Dec 16 2013 *)
  • PARI
    a(n)=my(t=n);while(n\=10,t*=n); t \\ Charles R Greathouse IV, Nov 20 2012
    

Formula

a(n) = Product_{k=1..length(n)} floor(n/10^(k-1)). - Vladeta Jovovic, Jan 08 2002
From Hieronymus Fischer, Aug 13 2007: (Start)
a(n) = product{0<=k<=floor(log_10(n)), floor(n/10^k)}, n>=1.
Recurrence:
a(n) = n*a(floor(n/10));
a(n*10^m) = n^m*10^(m(m+1)/2)*a(n).
a(k*10^m) = k^(m+1)*10^(m(m+1)/2), for 0
a(n) <= b(n), where b(n)=n^(1+floor(log_10(n)))/10^(1/2*(1+floor(log_10(n)))*floor(log_10(n))); equality holds for n=k*10^m, m>=0, 1<=k<10. Here b(n) can also be written n^(1+floor(log_10(n)))/10^A000217(floor(log_10(n))).
Also: a(n) <= 3^((1-log_10(3))/2)*n^((1+log_10(n))/2)=1.332718...*10^A000217(log_10(n)), equality for n=3*10^m, m>=0.
a(n) > c*b(n), where c=0.472362443816572... (see constant A132026).
Also: a(n) > c*2^((1-log_10(2))/2)*n^((1+log_10(n))/2) = 0.601839...*10^A000217(log_10(n)).
lim inf a(n)/b(n) = 0.472362443816572..., for n-->oo.
lim sup a(n)/b(n) = 1, for n-->oo.
lim inf a(n)/n^((1+log_10(n))/2) = 0.472362443816572...*sqrt(2)/2^log_10(sqrt(2)), for n-->oo.
lim sup a(n)/n^((1+log_10(n))/2) = sqrt(3)/3^log_10(sqrt(3)), for n-->oo.
lim inf a(n)/a(n+1) = 0.472362443816572... for n-->oo (see constant A132026).
a(n) = O(n^((1+log_10(n))/2)). (End)

Extensions

More terms from Robert G. Wilson v, Jan 07 2002

A098844 a(1)=1, a(n) = n*a(floor(n/2)).

Original entry on oeis.org

1, 2, 3, 8, 10, 18, 21, 64, 72, 100, 110, 216, 234, 294, 315, 1024, 1088, 1296, 1368, 2000, 2100, 2420, 2530, 5184, 5400, 6084, 6318, 8232, 8526, 9450, 9765, 32768, 33792, 36992, 38080, 46656, 47952, 51984, 53352, 80000, 82000, 88200, 90300
Offset: 1

Author

Benoit Cloitre, Nov 03 2004

Keywords

Examples

			a(10) = floor(10/2^0)*floor(10/2^1)*floor(10/2^2)*floor(10/2^3) = 10*5*2*1 = 100;
a(17) = 1088 since 17 = 10001(base 2) and so a(17) = 10001*1000*100*10*1(base 2) = 17*8*4*2*1 = 1088.
		

Crossrefs

For formulas regarding a general parameter p (i.e., terms floor(n/p^k)) see A132264.
For the product of terms floor(n/p^k) for p=3 to p=12 see A132027(p=3)-A132033(p=9), A067080(p=10), A132263(p=11), A132264(p=12).
For the products of terms 1+floor(n/p^k) see A132269-A132272, A132327, A132328.

Programs

  • Mathematica
    lst={};Do[p=n;s=1;While[p>1,p=IntegerPart[p/2];s*=p;];AppendTo[lst,s],{n,1,6!,2}];lst (* Vladimir Joseph Stephan Orlovsky, Jul 28 2009 *)
  • PARI
    a(n)=if(n<2,1,n*a(floor(n/2)))
    
  • Python
    from math import prod
    def A098844(n): return n*prod(n//2**k for k in range(1,n.bit_length()-1)) # Chai Wah Wu, Jun 07 2022

Formula

a(2^n) = 2^(n*(n+1)/2) = A006125(n+1).
From Hieronymus Fischer, Aug 13 2007: (Start)
a(n) = Product_{k=0..floor(log_2(n))} floor(n/2^k), n>=1.
Recurrence:
a(n*2^m) = n^m*2^(m(m+1)/2)*a(n).
a(n) <= n^((1+log_2(n))/2) = 2^A000217(log_2(n)); equality iff n is a power of 2.
a(n) >= c(n)*(n+1)^((1 + log_2(n+1))/2) for n != 2,
where c(n) = Product_{k=1..floor(log_2(n))} (1 - 1/2^k); equality holds iff n+1 is a power of 2.
a(n) > c*(n+1)^((1 + log_2(n+1))/2)
where c = 0.288788095086602421... (see constant A048651).
lim inf a(n)/n^((1+log_2(n))/2)=0.288788095086602421... for n-->oo.
lim sup a(n)/n^((1+log_2(n))/2) = 1 for n-->oo.
lim inf a(n)/a(n+1) = 0.288788095086602421... for n-->oo (see constant A048651).
a(n) = O(n^((1+log_2(n))/2)). (End)

Extensions

Formula section edited by Hieronymus Fischer, Jun 13 2012

A132027 a(n) = Product_{k=0..floor(log_3(n))} floor(n/3^k), n>=1.

Original entry on oeis.org

1, 2, 3, 4, 5, 12, 14, 16, 27, 30, 33, 48, 52, 56, 75, 80, 85, 216, 228, 240, 294, 308, 322, 384, 400, 416, 729, 756, 783, 900, 930, 960, 1089, 1122, 1155, 1728, 1776, 1824, 2028, 2080, 2132, 2352, 2408, 2464, 3375, 3450, 3525, 3840, 3920, 4000, 4335
Offset: 1

Author

Hieronymus Fischer, Aug 13 2007, Aug 20 2007

Keywords

Comments

If n is written in base 3 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product d(m)d(m-1)d(m-2)...d(2)d(1)d(0)*d(m)d(m-1)d(m-2)...d(2)d(1)*d(m)d(m-1)d(m= -2)...d(2)*...*d(m)d(m-1)d(m-2)*d(m)d(m-1)*d(m).

Examples

			a(11)=floor(11/3^0)*floor(11/3^1)*floor(11/3^2)=11*3*1=33;
a(13)=52 since 13=111(base-3) and so a(13)=111*11*1(base-3)=13*4*1=52.
		

Crossrefs

For formulas regarding a general parameter p (i.e. terms floor(n/p^k)) see A132264.
For the product of terms floor(n/p^k) for p=2 to p=12 see A098844(p=2), A132028(p=4)-A132033(p=9), A067080(p=10), A132263(p=11), A132264(p=12).
For the products of terms 1+floor(n/p^k) see A132269-A132272, A132327, A132328.

Programs

  • Mathematica
    Table[(f = If[# < 3, #, #*f[Quotient[#, 3]]] &)[n], {n, 51}] (* Ivan Neretin, May 29 2016 *)

Formula

Recurrence: a(n)=n*a(floor(n/3)); a(n*3^m)=n^m*3^(m(m+1)/2)*a(n).
a(k*3^m)=k^(m+1)*3^(m(m+1)/2), for k=1 or 2.
a(n)<=b(n), where b(n)=n^(1+floor(log_3(n)))/3^(1/2*(1+floor(log_3(n)))*floor(log_3(n))); equality holds if n is a power of 3 or two times a power of 3.
Also: a(n)<=2^((1-log_3(2))/2)*n^((1+log_3(n))/2)=1.1364507...*3^A000217(log_3(n)), equality for n=2*3^m, m>=0.
a(n)>c*b(n), where c=0.3826631966790330232889550... (see constant A132019).
Also: a(n)>c*2^((1-log_3(2))/2)*n^((1+log_3(n))/2)=0.434877...*3^A000217(log_3(n)).
lim inf a(n)/b(n)=0.3826631966790330232889550..., for n-->oo.
lim sup a(n)/b(n)=1, for n-->oo.
lim inf a(n)/n^((1+log_3(n))/2)=0.3826631966790330232889550...*sqrt(2)/2^log_3(sqrt(2)), for n-->oo.
lim sup a(n)/n^((1+log_3(n))/2)=sqrt(2)/2^log_3(sqrt(2)), for n-->oo.
lim inf a(n)/a(n+1)=0.3826631966790330232889550... for n-->oo (see constant A132019).
a(n)=O(n^((1+log_3(n))/2)).

A132272 a(n) = Product_{k>0} (1 + floor(n/10^k)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Offset: 0

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Comments

If n is written in base-10 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product (1+d(m)d(m-1)d(m-2)...d(2)d(1))*(1+d(m)d(m-1)d(m-2)...d(2))*...*(1+d(m)d(m-1)d(m-2))*(1+d(m)d(m-1))*(1+d(m)).
a(n) = A179051(n) for n < 100. [From Reinhard Zumkeller, Jun 27 2010]

Examples

			a(121)=(1+floor(121/10^1))*(1+floor(121/10^2))=13*2=26; a(132)=28 since 132=132(base-10) and so
a(132)=(1+13)*(1+1)(base-10)=14*2=28.
		

Crossrefs

For the product of terms floor(n/p^k) see A098844, A067080, A132027-A132033, A132263, A132264.

Programs

  • Maple
    A132272 := proc(n)
        a := 1;
        for k from 1 do
            f := floor(n/10^k) ;
            if f <=0 then
                return a;
            else
                a := a*(1+f) ;
            end if;
        end do:
    end proc:
    seq(A132272(n),n=1..120) ; # R. J. Mathar, Jun 13 2025
  • Mathematica
    Table[Product[1+Floor[n/10^k],{k,n}],{n,0,100}] (* Harvey P. Dale, Jul 20 2024 *)

Formula

The following formulas are given for a general parameter p considering the product of terms 1+floor(n/p^k) for 0
Recurrence: a(n)=(1+floor(n/p))*a(floor(n/p)); a(pn)=(1+n)*a(n); a(n*p^m)=product{0<=k
a(k*p^m-j)=k^m*p^(m(m-1)/2), for 0=1. a(p^m)=p^(m(m-1)/2)*product{0<=k
a(n)=A132271(floor(n/p))=A132271(n)/(1+n).
Asymptotic behavior: a(n)=O(n^((log_p(n)-1)/p)); this follows from the inequalities below.
a(n)<=A067080(n)/(n+1)*product{0<=k<=floor(log_p(n)), 1+1/p^k}.
a(n)>=A067080(n)/((n+1)*product{0
a(n)A000217(log_p(n))/(n+1), where c=product{k>0, 1+1/p^k}=2.2244691382741012... (for p=10 see constant A132325).
a(n)>n^((1+log_p(n))/2)/(n+1)=p^A000217(log_p(n))/(n+1).
lim sup n*a(n)/A067080(n)=2*product{k>0, 1+1/p^k}=2.2244691382741012..., for n-->oo (for p=10 see constant A132325).
lim inf n*a(n)/A067080(n)=1/product{k>0, 1-1/p^k}=1/0.8900100999989990000001000..., for n-->oo (for p=10 s. constant A132038).
lim inf a(n)/n^((1+log_p(n))/2)=1, for n-->oo.
lim sup a(n)/n^((1+log_p(n))/2)=2*product{k>0, 1+1/p^k}=2.2244691382741012..., for n-->oo (for p=10 see constant A132325).
lim inf a(n+1)/a(n)=2*product{k>0, 1+1/p^k}=2.2244691382741012... for n-->oo (for p=10 see constant A132325).

A132033 Product{0<=k<=floor(log_9(n)), floor(n/9^k)}, n>=1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 36, 38, 40, 42, 44, 46, 48, 50, 52, 81, 84, 87, 90, 93, 96, 99, 102, 105, 144, 148, 152, 156, 160, 164, 168, 172, 176, 225, 230, 235, 240, 245, 250, 255, 260, 265, 324, 330, 336, 342, 348, 354, 360, 366, 372
Offset: 1

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Comments

If n is written in base-9 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product d(m)d(m-1)d(m-2)...d(2)d(1)d(0)*d(m)d(m-1)d(m-2)...d(2)d(1)*d(m)d(m-1)d(m-2)...d(2)*...*d(m)d(m-1)d(m-2)*d(m)d(m-1)*d(m).

Examples

			a(85)=floor(85/9^0)*floor(85/9^1)*floor(85/9^2)=85*9*1=765; a(88)=792 since 88=107(base-9) and so a(88)=107*10*1(base-9)=88*9*1=792.
		

Crossrefs

For formulas regarding a general parameter p (i.e. terms floor(n/p^k)) see A132264.
For the product of terms floor(n/p^k) for p=2 to p=12 see A098844(p=2), A132027(p=3)-A132032(p=8), A067080(p=10), A132263(p=11), A132264(p=12).
For the products of terms 1+floor(n/p^k) see A132269-A132272, A132327, A132328.

Programs

  • Mathematica
    Table[Product[Floor[n/9^k],{k,0,Floor[Log[9,n]]}],{n,62}] (* James C. McMahon, Mar 03 2025 *)

Formula

Recurrence: a(n)=n*a(floor(n/9)); a(n*9^m)=n^m*9^(m(m+1)/2)*a(n).
a(k*9^m)=k^(m+1)*9^(m(m+1)/2), for 0
Asymptotic behavior: a(n)=O(n^((1+log_9(n))/2)); this follows from the inequalities below.
a(n)<=b(n), where b(n)=n^(1+floor(log_9(n)))/9^((1+floor(log_9(n)))*floor(log_9(n))/2); equality holds for n=k*9^m, 0=0. b(n) can also be written n^(1+floor(log_9(n)))/9^A000217(floor(log_9(n))).
Also: a(n)<=3^(1/4)*n^((1+log_9(n))/2)=1.316074013...*9^A000217(log_9(n)), equality holds for n=3*9^m, m>=0.
a(n)>c*b(n), where c=0.4689451783670236932832800... (see constant A132024).
Also: a(n)>c*2^((1-log_9(2))/2)*n^((1+log_9(n))/2)=0.4689451783670...*1.267747616...*9^A000217(log_9(n)).
lim inf a(n)/b(n)=0.4689451783670236932832800..., for n-->oo.
lim sup a(n)/b(n)=1, for n-->oo.
lim inf a(n)/n^((1+log_9(n))/2)=0.4689451783670236932832800...*sqrt(2)/2^log_9(sqrt(2)), for n-->oo.
lim sup a(n)/n^((1+log_9(n))/2)=3^(1/4)=1.316074013..., for n-->oo.
lim inf a(n)/a(n+1)=0.4689451783670236932832800... for n-->oo (see constant A132025).

A132328 a(n) = Product_{k>0} (1+floor(n/3^k)).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 3, 3, 8, 8, 8, 10, 10, 10, 12, 12, 12, 21, 21, 21, 24, 24, 24, 27, 27, 27, 80, 80, 80, 88, 88, 88, 96, 96, 96, 130, 130, 130, 140, 140, 140, 150, 150, 150, 192, 192, 192, 204, 204, 204, 216, 216, 216, 399, 399, 399, 420, 420, 420, 441, 441, 441, 528
Offset: 0

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Comments

If n is written in base-3 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product (1+d(m)d(m-1)d(m-2)...d(2)d(1))*(1+d(m)d(m-1)d(m-2)...d(2))*...*(1+d(m)d(m-1)d(m-2))*(1+d(m)d(m-1))*(1+d(m)).

Examples

			a(12)=(1+floor(12/3^1))*(1+floor(12/3^2))=5*2=10; a(19)=21 since 19=201(base-3) and so a(19)=(1+20)*(1+2)(base-3)=7*3=21.
		

Crossrefs

For formulas regarding a general parameter p (i.e. terms 1+floor(n/p^k)) see A132272.
For the product of terms floor(n/p^k) see A098844, A067080, A132027-A132033, A132263, A132264.

Programs

  • Maple
    f:= proc(n) option remember; local t;
      t:= floor(n/3);
      (1+t)*procname(t)
    end proc:
    f(0):= 1: f(1):= 1: f(2):= 1:
    map(f, [$0..100]); # Robert Israel, Oct 20 2020
  • Mathematica
    (* Using definition *)
    Table[Product[1 + Floor[n/3^k], {k, IntegerLength[n, 3] - 1}], {n, 0, 100}]
    (* Using recurrence -- faster *)
    a[0] = 1; a[n_] := a[n] = (1 + #)*a[#] & [Floor[n/3]];
    Table[a[n], {n, 0, 100}] (* Paolo Xausa, Sep 23 2024 *)

Formula

Recurrence: a(n)=(1+floor(n/3))*a(floor(n/3)); a(3n)=(1+n)*a(n); a(n*3^m)=product{0<=k
a(k*3^m-j)=k^m*3^(m(m-1)/2), for 0=1. a(3^m)=p^(m(m-1)/2)*product{0<=k
a(n)=A132327(floor(n/3))=A132327(n)/(1+n).
Asymptotic behavior: a(n)=O(n^((log_3(n)-1)/p)); this follows from the inequalities below.
a(n)<=A132027(n)/(n+1)*product{0<=k<=floor(log_3(n)), 1+1/3^k}.
a(n)>=A132027(n)/((n+1)*product{0
a(n)A000217(log_3(n))/(n+1), where c=product{k>0, 1+1/3^k}=3.12986803713402307587769821345767... (see constant A132323).
a(n)>n^((1+log_3(n))/2)/(n+1)=3^A000217(log_3(n))/(n+1).
lim sup n*a(n)/A132027(n)=2*product{k>0, 1+1/3^k}=3.12986803713402307587769821345767..., for n-->oo (see constant A132323).
lim inf n*a(n)/A132027(n)=1/product{k>0, 1-1/3^k}=1/0.560126077927948944969792243314140014..., for n-->oo (see constant A100220).
lim inf a(n)/n^((1+log_3(n))/2)=1, for n-->oo.
lim sup a(n)/n^((1+log_3(n))/2)=2*product{k>0, 1+1/3^k}=3.12986803713402307587769821345767..., for n-->oo (see constant A132323).
lim inf a(n+1)/a(n)=2*product{k>0, 1+1/3^k}=3.12986803713402307587769821345767... for n-->oo (see constant A132323).

A132263 Product{0<=k<=floor(log_11(n)), floor(n/11^k)}, n>=1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 275, 280, 285, 290, 295, 300, 305, 310
Offset: 1

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Comments

If n is written in base-11 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product d(m)d(m-1)d(m-2)...d(2)d(1)d(0)*d(m)d(m-1)d(m-2)...d(2)d(1)*d(m)d(m-1)d(m-2)...d(2)*...*d(m)d(m-1)d(m-2)*d(m)d(m-1)*d(m).

Examples

			a(50)=floor(50/11^0)*floor(50/11^1)=50*4=200; a(63)=315 since 63=58(base-11) and so a(63)=58*5(base-11)=63*5=315.
		

Crossrefs

For formulas regarding a general parameter p (i.e. terms floor(n/p^k)) see A132264.
For the product of terms floor(n/p^k) for p=2 to p=12 see A098844(p=2), A132027(p=3)-A132033(p=9), A067080(p=10), A132264(p=12).
For the products of terms 1+floor(n/p^k) see A132269-A132272, A132327, A132328.

Formula

Recurrence: a(n)=n*a(floor(n/11)); a(n*11^m)=n^m*11^(m(m+1)/2)*a(n).
a(k*11^m)=k^(m+1)*11^(m(m+1)/2), for 0
Asymptotic behavior: a(n)=O(n^((1+log_11(n))/2)); this follows from the inequalities below.
a(n)<=b(n), where b(n)=n^(1+floor(log_11(n)))/p^((1+floor(log_11(n)))*floor(log_11(n))/2); equality holds for n=k*11^m, 0=0. b(n) can also be written n^(1+floor(log_11(n)))/11^A000217(floor(log_11(n))).
Also: a(n)<=3^((1-log_11(3))/2)*n^((1+log_11(n))/2)=1.346673852...^((1-log_11(3))/2)*11^A000217(log_11(n)), equality holds for n=3*11^m, m>=0.
a(n)>c*b(n), where c=0.4751041275076031053975644472... (see constant A132265).
Also: a(n)>c*(sqrt(2)/2^log_11(sqrt(2)))*n^((1+log_11(n))/2)=0.607848303...*11^00217(log_11(n)).
lim inf a(n)/b(n)=0.4751041275076031053975644472..., for n-->oo.
lim sup a(n)/b(n)=1, for n-->oo.
lim inf a(n)/n^((1+log_p(n))/2)=0.4751041275076031...*sqrt(2)/2^log_11(sqrt(2)), for n-->oo.
lim sup a(n)/n^((1+log_p(n))/2)=sqrt(3)/3^log_11(sqrt(3))=1.346673852..., for n-->oo.
lim inf a(n)/a(n+1)=0.4751041275076031053975644472... for n-->oo (see constant A132265).

A132269 a(n) = Product_{k>=0} (1 + floor(n/2^k)).

Original entry on oeis.org

1, 2, 6, 8, 30, 36, 56, 64, 270, 300, 396, 432, 728, 784, 960, 1024, 4590, 4860, 5700, 6000, 8316, 8712, 9936, 10368, 18200, 18928, 21168, 21952, 27840, 28800, 31744, 32768, 151470, 156060, 170100, 174960, 210900, 216600, 234000, 240000, 340956, 349272, 374616
Offset: 0

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Comments

If n is written in base 2 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product (1+d(m)d(m-1)d(m-2)...d(2)d(1)d(0))*(1+d(m)d(m-1)d(m-2)...d(2)d(1))*(1+d(m)d(m-1)d(m-2)...d(2))*...*(1+d(m)d(m-1)d(m-2))*(1+d(m)d(m-1))*(1+d(m)).
From Gary W. Adamson, Aug 25 2016: (Start)
Given the following production matrix M =
1, 0, 0, 0, 0, ...
2, 0, 0, 0, 0, ...
0, 3, 0, 0, 0, ...
0, 4, 0, 0, 0, ...
0, 0, 5, 0, 0, ...
0, 0, 6, 0, 0, ...
0, 0, 0, 7, 0, ...
...
the sequence is the left-shifted vector as lim_{n->infinity} M^n. (End)

Examples

			a(10) = (1 + floor(10/2^0))*(1 + floor(10/2^1))*(1 + floor(10/2^2))*(1 + floor(10/2^3)) = 11*6*3*2 = 396;
a(17) = 4860 since 17 = 10001_2 and so a(17) = (1+10001_2)*(1+1000_2)*(1+100_2)*(1+10_2)*(1+1) = 18*9*5*3*2 = 4860.
		

Crossrefs

For formulas regarding a general parameter p (i.e., terms 1+floor(n/p^k)) see A132271.
For the product of terms floor(n/p^k) see A098844, A067080, A132027-A132033, A132263, A132264.

Programs

  • Magma
    [1] cat [n le 1 select 2 else (1+n)*Self(Floor(n/2)): n in [1..50]]; // Vincenzo Librandi, Aug 26 2016
  • Maple
    f:= proc(n) option remember; (1+n)*procname(floor(n/2)) end proc:
    f(0):= 1:
    map(f, [$0..100]); # Robert Israel, Aug 26 2016
  • Mathematica
    Table[Product[1 + Floor[2 n/2^k], {k, 2 n}], {n, 0, 42}] (* or *)
    Table[Function[w, Times @@ Map[1 + FromDigits[PadRight[w, #], 2] &, Range@ Length@ w]]@ IntegerDigits[n, 2], {n, 0, 42}] (* Michael De Vlieger, Aug 26 2016 *)

Formula

Recurrence: a(n)=(1+n)*a(floor(n/2)); a(2n)=(1+2n)*a(n); a(n*2^m) = (Product_{k=1..m} (1 + n*2^k))*a(n).
a(2^m-1) = 2^(m*(m+1)/2), a(2^m) = 2^(m*(m+1)/2)*Product_{k=0..m} (1 + 1/2^k), m>=1.
a(n) = A132270(2n) = (1+n)*A132270(n).
Asymptotic behavior: a(n) = O(n^((1+log_2(n))/2)); this follows from the inequalities below.
a(n) <= A098844(n)*Product_{k=0..floor(log_2(n))} (1 + 1/2^k).
a(n) >= A098844(n)/Product_{k=1..floor(log_2(n))} (1 - 1/2^k).
a(n) < c*n^((1+log_2(n))/2) = c*2^A000217(log_2(n)), where c = Product_{k>=0} (1 + 1/2^k) = 4.7684620580627... (see constant A081845).
a(n) > n^((1+log_2(n))/2) = 2^A000217(log_2(n)),
lim sup a(n)/A098844(n) = Product_{k>=0} (1 + 1/2^k) = 4.7684620580627..., for n->oo (see constant A081845).
lim inf a(n)/A098844(n) = 1/Product_{k>=1} (1 - 1/2^k) = 1/0.288788095086602421..., for n->oo (see constant A048651).
lim inf a(n)/n^((1+log_2(n))/2) = 1, for n->oo.
lim sup a(n)/n^((1+log_2(n))/2) = Product_{k>=0} (1 + 1/2^k) = 4.7684620580627..., for n->oo (see constant A081845).
lim inf a(n+1)/a(n) = Product_{k>=0} (1 + 1/2^k) = 4.7684620580627... for n->oo (see constant A081845).
G.f. g(x) satisfies g(x) = (1+2x)*g(x^2) + 2*x^2*(1+x)*g'(x^2). - Robert Israel, Aug 26 2016

A132327 a(n) = Product{k>=0} (1 + floor(n/3^k)).

Original entry on oeis.org

1, 2, 3, 8, 10, 12, 21, 24, 27, 80, 88, 96, 130, 140, 150, 192, 204, 216, 399, 420, 441, 528, 552, 576, 675, 702, 729, 2240, 2320, 2400, 2728, 2816, 2904, 3264, 3360, 3456, 4810, 4940, 5070, 5600, 5740, 5880, 6450, 6600, 6750, 8832, 9024, 9216, 9996, 10200
Offset: 0

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Comments

If n is written in base-3 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product (1+d(m)d(m-1)d(m-2)...d(2)d(1)d(0))*(1+d(m)d(m-1)d(m-2)...d(2)d(1))*(1+d(m)d(m-1)d(m-2)...d(2))*...*(1+d(m)d(m-1)d(m-2))*(1+d(m)d(m-1))*(1+d(m)).

Examples

			a(12)=(1+floor(12/3^0))*(1+floor(12/3^1))*(1+floor(12/3^2))=13*5*2=130; a(20)=441 since 20=202(base-3) and so
a(20)=(1+202)*(1+20)*(1+2)(base-3)=21*7*3=441.
		

Crossrefs

Cf. A100220, A132027, A132038, A132264, A132269(for p=2), A132271(for p=10).
For formulas regarding a general parameter p (i.e. terms 1+floor(n/p^k)) see A132271.
For the product of terms floor(n/p^k) see A098844, A067080, A132027-A132033, A132263, A132264.

Programs

  • Mathematica
    Table[Product[1+Floor[n/3^k],{k,0,n}],{n,0,49}] (* James C. McMahon, Mar 07 2025 *)

Formula

Recurrence: a(n)=(1+n)*a(floor(n/3)); a(3n)=(1+3n)*a(n); a(n*3^m)=product{1<=k<=m, 1+n*3^k}*a(n).
a(k*3^m-j)=(k*3^m-j+1)*3^m*p^(m(m-1)/2), for 0=1, a(3^m)=3^(m(m+1)/2)*product{0<=k<=m, 1+1/3^k}, m>=1.
a(n)=A132328(3*n)=(1+n)*A132328(n).
Asymptotic behavior: a(n)=O(n^((1+log_3(n))/2)); this follows from the inequalities below.
a(n)<=A132027(n)*product{0<=k<=floor(log_3(n)), 1+1/3^k}.
a(n)>=A132027(n)/product{1<=k<=floor(log_3(n)), 1-1/3^k}.
a(n)A000217(log_3(n)), where c=product{k>=0, 1+1/p^k}=3.12986803713402307587769821345767... (see constant A132323).
a(n)>n^((1+log_3(n))/2)=3^A000217(log_3(n)).
lim sup a(n)/A132027(n)=2*product{k>0, 1+1/3^k}=3.12986803713402307587769821345767..., for n-->oo (see constant A132323).
lim inf a(n)/A132027(n)=1/product{k>0, 1-1/3^k}=1/0.560126077927948944969792243314140014..., for n-->oo (see constant A100220).
lim inf a(n)/n^((1+log_3(n))/2)=1, for n-->oo.
lim sup a(n)/n^((1+log_3(n))/2)=2*product{k>0, 1+1/3^k}=3.12986803713402307587769821345767..., for n-->oo (see constant A132323).
lim inf a(n+1)/a(n)=2*product{k>0, 1+1/3^k}=3.12986803713402307587769821345767... for n-->oo (see constant A132323).

A132271 Product{k>=0, 1+floor(n/10^k)}.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 306, 312, 318, 324, 330, 336, 342, 348, 354, 360, 427
Offset: 0

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Comments

If n is written in base-10 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product (1+d(m)d(m-1)d(m-2)...d(2)d(1)d(0))*(1+d(m)d(m-1)d(m-2)...d(2)d(1))*(1+d(m)d(m-1)d(m-2)...d(2))*...*(1+d(m)d(m-1)d(m-2))*(1+d(m)d(m-1))*(1+d(m)).

Examples

			a(12)=(1+floor(12/10^0))*(1+floor(12/10^1))=13*2=26; a(21)=63 since 21=21(base-10) and so
a(21)=(1+21)*(1+2)(base-10)=22*3=66.
		

Crossrefs

For the product of terms floor(n/p^k) see A098844, A067080, A132027-A132033, A132263, A132264.

Programs

  • Mathematica
    f[n_] := Block[{k = 0, p = 1}, While[a = Floor[n/10^k]; a > 0, p *= 1 + a; k++]; p]; Array[f, 61, 0] (* Robert G. Wilson v, May 10 2011 *)
    Table[Product[1+Floor[n/10^k],{k,0,n}],{n,0,60}] (* Harvey P. Dale, May 14 2019 *)

Formula

The following formulas are given for a general parameter p considering the product of terms 1+floor(n/p^k) for 0<=k<=floor(log_p(n)), where p=10 for this sequence.
Recurrence: a(n)=(1+n)*a(floor(n/p)); a(pn)=(1+pn)*a(n); a(n*p^m)=product{1<=k<=m, 1+n*p^k}*a(n).
a(k*p^m-j)=(k*p^m-j+1)*k^m*p^(m(m-1)/2), for 0=1, a(p^m)=p^(m(m+1)/2)*product{0<=k<=m, 1+1/p^k}, m>=1.
a(n)=A132272(p*n)=(1+n)*A132272(n).
Asymptotic behavior: a(n)=O(n^((1+log_p(n))/2)); this follows from the inequalities below.
a(n)<=A067080(n)*product{0<=k<=floor(log_p(n)), 1+1/p^k}.
a(n)>=A067080(n)/product{1<=k<=floor(log_p(n)), 1-1/p^k}.
a(n)A000217(log_p(n)), where c=product{k>=0, 1+1/p^k}=2.2244691382741012... (for p=10 see constant A132325).
a(n)>n^((1+log_p(n))/2)=p^A000217(log_p(n)).
lim sup a(n)/A067080(n)=2*product{k>0, 1+1/p^k}=2.2244691382741012..., for n-->oo (for p=10 see constant A132325).
lim inf a(n)/A067080(n)=1/product{k>0, 1-1/p^k}=1/0.8900100999989990000001000..., for n-->oo (for p=10 see constant A132038).
lim inf a(n)/n^((1+log_p(n))/2)=1, for n-->oo.
lim sup a(n)/n^((1+log_p(n))/2)=2*product{k>0, 1+1/p^k}=2.2244691382741012..., for n-->oo (for p=10 see constant A132325).
lim inf a(n+1)/a(n)=2*product{k>0, 1+1/p^k}=2.2244691382741012... for n-->oo (for p=10 see constant A132325).
Showing 1-10 of 16 results. Next