cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A239831 Floor(7n^2/2) + floor(5n/2) + floor(3n/7).

Original entry on oeis.org

5, 19, 39, 67, 101, 143, 191, 247, 308, 379, 454, 539, 628, 727, 830, 942, 1060, 1186, 1318, 1458, 1604, 1758, 1917, 2086, 2259, 2442, 2629, 2826, 3027, 3237, 3453, 3677, 3907, 4145, 4389, 4641, 4898, 5165, 5436, 5717, 6002, 6297, 6596, 6904, 7218, 7540
Offset: 1

Views

Author

Katherine Guo, Mar 27 2014

Keywords

Comments

This is a quadratic sequence.

Examples

			For n=3, a(3) = floor(7*3^2/2) + floor(5*3/2) + floor(3*3/7) = 39.
		

Programs

  • Magma
    [Floor(7*n^2/2) + Floor(5*n/2) + Floor(3*n/7): n in [1..50]]; // Vincenzo Librandi, Mar 29 2014
  • Maple
    A239831:=n->floor(7*n^2/2) + floor(5*n/2) + floor(3*n/7); seq(A239831(n), n=1..50); # Wesley Ivan Hurt, Mar 28 2014
  • Mathematica
    Table[Floor[7 n^2/2] + Floor[5 n/2] + Floor[3 n/7], {n, 50}] (* Bruno Berselli, Mar 28 2014 *)

Formula

a(n) = (n(7n + 5) + (-1)^n - 1)/2 + A132270(3n + 1). [Bruno Berselli, Mar 28 2014]
a(n) = +a(n-1) +a(n-2) -a(n-3) +a(n-7) -a(n-8) -a(n-9) +a(n-10). [Bruno Berselli, Mar 28 2014]

Extensions

More terms from Bruno Berselli, Mar 28 2014

A225875 We write the 1 + 4*k numbers once and twice the others.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 4, 5, 6, 6, 7, 7, 8, 8, 9, 10, 10, 11, 11, 12, 12, 13, 14, 14, 15, 15, 16, 16, 17, 18, 18, 19, 19, 20, 20, 21, 22, 22, 23, 23, 24, 24, 25, 26, 26, 27, 27, 28, 28, 29, 30, 30, 31, 31, 32, 32, 33, 34, 34, 35, 35, 36, 36, 37, 38, 38, 39, 39, 40, 40, 41, 42, 42, 43
Offset: 1

Views

Author

Keywords

Comments

First differences are periodic with period 7.

Crossrefs

Cf. A132270.

Programs

  • Mathematica
    t = {}; Do[If[Mod[n, 4] == 1, AppendTo[t, n], AppendTo[t, {n, n}]], {n, 50}]; Flatten[t] (* T. D. Noe, May 23 2013 *)
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 1, -1},{1, 2, 2, 3, 3, 4, 4, 5},74] (* Ray Chandler, Aug 26 2015 *)
    Table[If[Mod[n, 4] == 1, n, {n, n}], {n, 50}] // Flatten (* or *) Drop[ Flatten[ Table[{n,n},{n,50}]],{1,-1,8}] (* Harvey P. Dale, Feb 03 2019 *)

Formula

a(n+1) = 1 + 4*floor(n/7) + [0,1,1,2,2,3,3].
G.f.: x*(1 + x + x^3 + x^5)/((1-x)^2 * (1 + x + x^2 + x^3 + x^4 + x^5 + x^6)).
a(n) = n - floor(3*n/7). - Wesley Ivan Hurt, Sep 29 2017

Extensions

Corrected, extended, and edited by Ralf Stephan, May 20 2013
Previous Showing 11-12 of 12 results.