cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A323716 a(n) = Product_{k=0..n} (3^k + 1).

Original entry on oeis.org

2, 8, 80, 2240, 183680, 44817920, 32717081600, 71584974540800, 469740602936729600, 9246374028206585446400, 545998386365598870609920000, 96722522147893108730806108160000, 51402410615320609490117059732766720000
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 25 2019

Keywords

Crossrefs

Programs

  • Magma
    [(&*[3^j+1: j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 30 2023
    
  • Mathematica
    Table[Product[3^k+1, {k, 0, n}], {n, 0, 12}]
    Table[QPochhammer[-1, 3, n+1], {n, 0, 12}]
  • PARI
    a(n) = prod(k=0, n, 3^k+1); \\ Michel Marcus, Jan 25 2019
    
  • SageMath
    [product(3^j+1 for j in range(n+1)) for n in range(21)] # G. C. Greubel, Aug 30 2023

Formula

a(n) ~ c * 3^(n*(n+1)/2), where c = A132323 = QPochhammer[-1, 1/3] = 3.12986803713402307587769821345767...

A371748 Decimal expansion of Product_{k>=0} (1 + 1/4^k).

Original entry on oeis.org

2, 7, 1, 1, 8, 1, 9, 3, 4, 7, 7, 2, 6, 9, 5, 8, 7, 6, 0, 6, 9, 1, 0, 8, 8, 4, 6, 9, 7, 0, 7, 9, 1, 8, 6, 0, 2, 4, 4, 3, 3, 9, 9, 0, 8, 5, 6, 7, 4, 8, 8, 5, 4, 9, 4, 6, 9, 3, 0, 8, 0, 6, 2, 9, 0, 0, 6, 0, 2, 6, 2, 3, 6, 1, 3, 0, 5, 9, 7, 7, 8, 0, 0, 9, 7, 8, 7, 7, 4, 0, 5, 2, 5, 2, 1, 4, 6, 0, 4, 6
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 05 2024

Keywords

Examples

			2.71181934772695876069108846970791860244...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[QPochhammer[-1, 1/4], 10, 100][[1]]

Formula

Equals A065445^2. - Hugo Pfoertner, Apr 05 2024

A371751 Decimal expansion of Product_{k>=0} (1 + 1/5^k).

Original entry on oeis.org

2, 5, 2, 1, 0, 0, 1, 6, 1, 3, 4, 2, 0, 2, 1, 5, 0, 6, 4, 7, 7, 7, 7, 4, 6, 3, 1, 5, 4, 7, 8, 2, 1, 3, 0, 1, 3, 2, 0, 6, 8, 1, 8, 9, 7, 8, 0, 9, 1, 3, 2, 6, 4, 2, 6, 3, 1, 2, 2, 1, 7, 1, 3, 9, 5, 6, 2, 7, 2, 1, 0, 0, 5, 0, 8, 7, 0, 5, 0, 0, 1, 9, 7, 2, 7, 6, 2, 8, 0, 6, 6, 3, 3, 4, 7, 7, 9, 9, 1, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 05 2024

Keywords

Examples

			2.5210016134202150647777463154782130132...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[QPochhammer[-1, 1/5], 10, 100][[1]]
    RealDigits[Times@@Table[1+1/5^k,{k,0,1000}],10,100][[1]] (* Harvey P. Dale, Sep 17 2024 *)

A132266 Decimal expansion of Product_{k>=0} (1 - 1/(2*12^k)).

Original entry on oeis.org

4, 7, 7, 3, 5, 2, 1, 7, 0, 2, 5, 4, 8, 9, 3, 8, 0, 1, 9, 8, 3, 3, 4, 2, 8, 6, 3, 6, 5, 8, 2, 0, 2, 3, 0, 3, 5, 0, 8, 8, 5, 9, 6, 4, 2, 1, 4, 4, 4, 5, 8, 5, 0, 0, 7, 6, 0, 3, 4, 5, 6, 1, 3, 8, 9, 1, 4, 1, 2, 8, 8, 8, 5, 7, 9, 1, 6, 3, 5, 2, 4, 7, 7, 2, 8, 0, 9, 4, 1, 6, 5, 3, 5, 3, 6, 1, 1, 3, 5, 0, 0, 3, 7, 2, 5
Offset: 0

Views

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Examples

			0.47735217025489380198334286365820...
		

Crossrefs

Programs

  • Mathematica
    digits = 105; NProduct[1-1/(2*12^k), {k, 0, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+5] // N[#, digits+5]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *)
    (1/2)*N[QPochhammer[1/24, 1/12], 200] (* G. C. Greubel, Dec 20 2015 *)
  • PARI
    prodinf(x=0, 1-1/(2*12^x)) \\ Altug Alkan, Dec 20 2015

Formula

lim inf (Product_{k=0..floor(log_12(n))} floor(n/12^k)*12^k/n) for n-->oo.
lim inf A132264(n)*12^((1+floor(log_12(n)))*floor(log_12(n))/2)/n^(1+floor(log_12(n))) for n-->oo.
lim inf A132264(n)*12^A000217(floor(log_12(n)))/n^(1+floor(log_12(n))) for n-->oo.
(1/2)*exp(-Sum_{n>0} 12^(-n)*Sum_{k|n} 1/(k*2^k)).
lim inf A132264(n)/A132264(n+1) = 0.47735217025489380... for n-->oo.
Equals (1/2)*(1/24; 1/12){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Dec 20 2015

A371746 Decimal expansion of Product_{k>=0} 1 / (1 + 1/3^k).

Original entry on oeis.org

3, 1, 9, 5, 0, 2, 2, 8, 8, 3, 1, 8, 7, 3, 8, 8, 9, 0, 1, 9, 4, 8, 0, 0, 7, 1, 0, 1, 1, 0, 9, 0, 0, 6, 5, 4, 2, 4, 2, 6, 8, 4, 5, 5, 1, 9, 4, 5, 6, 2, 2, 7, 5, 3, 6, 5, 1, 4, 7, 1, 7, 5, 9, 6, 0, 9, 2, 0, 1, 1, 7, 9, 9, 2, 8, 8, 4, 7, 6, 6, 4, 2, 4, 5, 0, 6, 1, 1, 7, 7, 9, 6, 5, 4, 3, 3, 8, 7, 1, 8
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 05 2024

Keywords

Examples

			0.31950228831873889019480071011090065424...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/QPochhammer[-1, 1/3], 10, 100][[1]]

Formula

Equals 1 / A132323.
Previous Showing 11-15 of 15 results.