A334603
Period of the fraction 1/11^n for n >= 1.
Original entry on oeis.org
2, 22, 242, 2662, 29282, 322102, 3543122, 38974342, 428717762, 4715895382, 51874849202, 570623341222, 6276856753442, 69045424287862, 759499667166482, 8354496338831302, 91899459727144322, 1010894056998587542, 11119834626984462962, 122318180896829092582
Offset: 1
1/121 = 0. 0082644628099173553719 0082644628099173553719 ... with periodic part {0082644628099173553719}, whose length is 22 digits, so a(2) = 22.
- J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 346 pp. 50, 204-205, Ellipses, Paris 2004.
-
MultiplicativeOrder[10, 11^#] & /@ Range[20] (* Giovanni Resta, May 07 2020 *)
-
a(n) = znorder(Mod(10, 11^n)); \\ Michel Marcus, May 09 2020
A358138
Difference between maximum and minimum part in the n-th composition in standard order.
Original entry on oeis.org
0, 0, 0, 0, 1, 1, 0, 0, 2, 0, 1, 2, 1, 1, 0, 0, 3, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 0, 0, 4, 2, 3, 0, 2, 2, 2, 2, 2, 0, 1, 2, 1, 1, 1, 4, 3, 2, 2, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 0, 0, 5, 3, 4, 1, 3, 3, 3, 1, 2, 1, 2, 2, 2, 2, 2, 3, 3, 1, 2, 1, 1, 1, 1
Offset: 1
See link for sequences related to standard compositions.
This is the maximum minus minimum part in row n of
A066099.
The version for Heinz numbers of partitions is
A243055.
The partial sums of standard compositions are
A358134, adjusted
A242628.
A351014 counts distinct runs in standard compositions.
-
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Table[Max[stc[n]]-Min[stc[n]],{n,1,100}]
A359041
Number of finite sets of integer partitions with all equal sums and total sum n.
Original entry on oeis.org
1, 1, 2, 3, 6, 7, 14, 15, 32, 31, 63, 56, 142, 101, 240, 211, 467, 297, 985, 490, 1524, 1247, 2542, 1255, 6371, 1979, 7486, 7070, 14128, 4565, 32953, 6842, 42229, 37863, 56266, 17887, 192914, 21637, 145820, 197835, 371853, 44583, 772740, 63261, 943966, 1124840
Offset: 0
The a(1) = 1 through a(6) = 14 sets:
{(1)} {(2)} {(3)} {(4)} {(5)} {(6)}
{(11)} {(21)} {(22)} {(32)} {(33)}
{(111)} {(31)} {(41)} {(42)}
{(211)} {(221)} {(51)}
{(1111)} {(311)} {(222)}
{(2),(11)} {(2111)} {(321)}
{(11111)} {(411)}
{(2211)}
{(3111)}
{(21111)}
{(111111)}
{(3),(21)}
{(3),(111)}
{(21),(111)}
The version for compositions instead of partitions is
A358904.
A001970 counts multisets of partitions.
-
Table[If[n==0,1,Sum[Binomial[PartitionsP[d],n/d],{d,Divisors[n]}]],{n,0,50}]
-
a(n) = if (n, sumdiv(n, d, binomial(numbpart(d), n/d)), 1); \\ Michel Marcus, Dec 14 2022
A367631
Triangle read by rows: T(n,k) is the number of permutations of length n avoiding simultaneously the patterns 123 and 132 with the maximum number of non-overlapping descents equal k.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 0, 4, 0, 0, 0, 5, 3, 0, 0, 0, 2, 14, 0, 0, 0, 0, 0, 23, 9, 0, 0, 0, 0, 0, 16, 48, 0, 0, 0, 0, 0, 0, 4, 97, 27, 0, 0, 0, 0, 0, 0, 0, 94, 162, 0, 0, 0, 0, 0, 0, 0, 0, 44, 387, 81, 0, 0, 0, 0, 0, 0, 0, 0, 8, 476, 540, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 320, 1485, 243, 0, 0, 0, 0, 0, 0
Offset: 0
Triangle T(n,k) begins:
1;
1, 0;
1, 1, 0;
0, 4, 0, 0;
0, 5, 3, 0, 0;
0, 2, 14, 0, 0, 0;
0, 0, 23, 9, 0, 0, 0;
0, 0, 16, 48, 0, 0, 0, 0;
0, 0, 4, 97, 27, 0, 0, 0, 0;
0, 0, 0, 94, 162, 0, 0, 0, 0, 0;
0, 0, 0, 44, 387, 81, 0, 0, 0, 0, 0;
0, 0, 0, 8, 476, 540, 0, 0, 0, 0, 0, 0;
0, 0, 0, 0, 320, 1485, 243, 0, 0, 0, 0, 0, 0;
...
A034745
Dirichlet convolution of Fibonacci numbers with 3^(n-1).
Original entry on oeis.org
1, 4, 11, 33, 86, 266, 742, 2244, 6613, 19834, 59138, 177639, 531674, 1595468, 4783786, 14352225, 43048318, 129149968, 387424670, 1162288458, 3486796922, 10460430230, 31381088266, 94143408282, 282429611911, 847289262976
Offset: 1
-
Table[Sum[Fibonacci[n/d]*3^(d - 1), {d, Divisors[n]}], {n, 1, 25}] (* Vaclav Kotesovec, Sep 10 2019 *)
Original entry on oeis.org
3, 1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, 177147, 531441, 1594323, 4782969, 14348907, 43046721, 129140163, 387420489, 1162261467, 3486784401, 10460353203, 31381059609, 94143178827, 282429536481, 847288609443, 2541865828329
Offset: 0
-
read("transforms") ; A001045 := proc(n) option remember ; if n <= 1 then n; else procname(n-1)+2*procname(n-2) ; fi; end:
a001045 := [seq(A001045(n),n=0..80) ] ; a154879 := DIFF(DIFF(DIFF(a001045))) ; BINOMIAL(a154879) ; # R. J. Mathar, Jul 23 2009
A247936
Riordan array ((1-2x)/(1-3x), 2x).
Original entry on oeis.org
1, 1, 2, 3, 2, 4, 9, 6, 4, 8, 27, 18, 12, 8, 16, 81, 54, 36, 24, 16, 32, 243, 162, 108, 72, 48, 32, 64, 729, 486, 324, 216, 144, 96, 64, 128, 2187, 1458, 972, 648, 432, 288, 192, 128, 256, 6561, 4374, 2916, 1944, 1296, 864, 576, 384, 256, 512, 19683, 13122
Offset: 0
Triangle begins:
1
1, 2
3, 2, 4
9, 6, 4, 8
27, 18, 12, 8, 16
81, 54, 36, 24, 16, 32
243, 162, 108, 72, 48, 32, 64
Production matrix begins:
1, 2
1, 0, 2
1, 0, 0, 2
1, 0, 0, 0, 2
1, 0, 0, 0, 0, 2
1, 0, 0, 0, 0, 0, 2
1, 0, 0, 0, 0, 0, 0, 2
A336129
Number of strict compositions of divisors of n.
Original entry on oeis.org
1, 2, 4, 5, 6, 16, 14, 24, 31, 64, 66, 120, 134, 208, 360, 459, 618, 894, 1178, 1622, 2768, 3364, 4758, 6432, 8767, 11440, 15634, 24526, 30462, 42296, 55742, 75334, 98112, 131428, 168444, 258403, 315974, 432244, 558464, 753132, 958266, 1280840, 1621274
Offset: 1
The a(1) = 1 through a(7) = 14 compositions:
(1) (1) (1) (1) (1) (1) (1)
(2) (3) (2) (5) (2) (7)
(1,2) (4) (1,4) (3) (1,6)
(2,1) (1,3) (2,3) (6) (2,5)
(3,1) (3,2) (1,2) (3,4)
(4,1) (1,5) (4,3)
(2,1) (5,2)
(2,4) (6,1)
(4,2) (1,2,4)
(5,1) (1,4,2)
(1,2,3) (2,1,4)
(1,3,2) (2,4,1)
(2,1,3) (4,1,2)
(2,3,1) (4,2,1)
(3,1,2)
(3,2,1)
Compositions of divisors are
A034729.
Strict partitions of divisors are
A047966.
Partitions of divisors are
A047968.
-
Table[Sum[Length[Join@@Permutations/@Select[IntegerPartitions[d],UnsameQ@@#&]],{d,Divisors[n]}],{n,12}]
Comments