cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A133535 Sum of fourth powers of two consecutive primes.

Original entry on oeis.org

97, 706, 3026, 17042, 43202, 112082, 213842, 410162, 987122, 1630802, 2797682, 4699922, 6244562, 8298482, 12770162, 20007842, 25963202, 33996962, 45562802, 53809922, 67348322, 86408402, 110200562, 151271522, 192589682, 216611282
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=2^4+3^4=97.
		

Crossrefs

Programs

  • Mathematica
    a = 4; Table[Prime[n]^a + Prime[n + 1]^a, {n, 1, 100}]

Formula

a(n) = A030514(n) + A030514(n+1). - Michel Marcus, Nov 09 2013

A133536 Sum of fifth powers of two consecutive primes.

Original entry on oeis.org

275, 3368, 19932, 177858, 532344, 1791150, 3895956, 8912442, 26947492, 49140300, 97973108, 185200158, 262864644, 376353450, 647540500, 1133119792, 1559520600, 2194721408, 3154354458, 3877300944, 5150127992, 7016097042, 9523100092
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=2^5+3^5=275.
		

Crossrefs

Programs

  • Mathematica
    a = 5; Table[Prime[n]^a + Prime[n + 1]^a, {n, 1, 100}]

Formula

a(n) = A050997(n) + A050997(n+1). - Michel Marcus, Nov 09 2013

A133537 Sum of sixth powers of two consecutive primes.

Original entry on oeis.org

793, 16354, 133274, 1889210, 6598370, 28964378, 71183450, 195081770, 742859210, 1482327002, 3453230090, 7315830650, 11071467290, 17100578378, 32943576458, 64344894770, 93700908002, 141978756530, 218558666090, 279434510210
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=793 because 2^6+3^6=793.
		

Crossrefs

Programs

  • Mathematica
    a = 6; Table[Prime[n]^a + Prime[n + 1]^a, {n, 1, 100}]

Formula

a(n) = A030516(n) + A030516(n+1). - Michel Marcus, Nov 09 2013

A133533 Sum of sixth powers of three consecutive primes.

Original entry on oeis.org

16418, 134003, 1904835, 6716019, 30735939, 76010259, 219219339, 789905091, 1630362891, 4048053411, 8203334331, 13637193699, 21850682619, 39264939507, 75124110099, 115865269131, 184159290171, 270079040451, 369892892379
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=16418 because 2^6+3^6+5^6=16418.
		

Crossrefs

Programs

  • Maple
    L:= [seq(ithprime(i)^6,i=1..100)]:
    L[1..-3]+L[2..-2]+L[3..-1]; # Robert Israel, Jun 28 2018
  • Mathematica
    a = 6; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a, {n, 1, 100}]
    Total/@(Partition[Prime[Range[25]],3,1]^6)  (* Harvey P. Dale, Mar 29 2011 *)

Formula

a(n) = A133537(n) + A030516(n+2). - Michel Marcus, Nov 09 2013

A133539 Sum of third powers of five consecutive primes.

Original entry on oeis.org

1834, 4023, 8909, 15643, 27467, 50525, 78119, 123859, 185921, 253261, 332695, 451781, 606507, 764567, 985823, 1239911, 1480051, 1767711, 2112517, 2516723, 3071485, 3712769, 4312457, 4965713, 5555773, 6085997, 7104079, 8259443
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=1834 because 2^3+3^3+5^3+7^3+11^3=1834.
		

Crossrefs

Programs

  • Mathematica
    a = 3; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a, {n, 1, 100}]
    Total[#^3]&/@Partition[Prime[Range[40]],5,1] (* Harvey P. Dale, May 01 2013 *)

Formula

a(n) = A133525(n) + A030078(n+4). - Michel Marcus, Nov 09 2013

A133543 Sum of seventh powers of five consecutive primes.

Original entry on oeis.org

20391154, 83139543, 493476029, 1387269643, 4791271547, 22021660685, 49471526279, 143993064739, 337853466881, 606267252541, 1095640496695, 2242839022421, 4636558630107, 7584547192247, 13373440186463
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=20391154 because 2^7+3^7+5^7+7^7+11^7=20391154
		

Crossrefs

Programs

  • Mathematica
    a = 7; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a, {n, 1, 100}]
    Total/@Partition[Prime[Range[20]]^7,5,1] (* Harvey P. Dale, Mar 05 2022 *)

A133541 Sum of fifth powers of five consecutive primes.

Original entry on oeis.org

181258, 552519, 1972133, 4445107, 10864643, 31214741, 59472599, 127396699, 240776801, 381348901, 590182759, 979749101, 1625329443, 2354069543, 3557186207, 5132070551, 6786946651, 9149078751, 12243523093, 16477457435
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=181258 because 2^5+3^5+5^5+7^5+11^5=181258.
		

Crossrefs

Programs

  • Mathematica
    a = 5; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a, {n, 1, 100}]
    Total/@Partition[Prime[Range[30]]^5,5,1] (* Harvey P. Dale, Dec 02 2017 *)

Formula

a(n) = A133527(n) + A050997(n+4). - Michel Marcus, Nov 09 2013

A133542 Sum of sixth powers of five consecutive primes.

Original entry on oeis.org

1905628, 6732373, 30869213, 77899469, 225817709, 818869469, 1701546341, 4243135181, 8946193541, 15119520701, 25303912709, 46580770157, 86195577389, 132965847509, 217102866629, 334423935221, 463593800381, 664500722261
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=1905628 because 2^6+3^6+5^6+7^6+11^6=1905628.
		

Crossrefs

Programs

  • Mathematica
    a = 6; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a, {n, 1, 100}]
    Total/@(Partition[Prime[Range[30]],5,1]^6)  (* Harvey P. Dale, Mar 13 2011 *)

Formula

a(n) = A133528(n) + A030516(n+4). - Michel Marcus, Nov 09 2013

A131686 Sum of squares of five consecutive primes.

Original entry on oeis.org

208, 373, 653, 989, 1469, 2189, 2981, 4061, 5381, 6701, 8069, 9917, 12029, 14069, 16709, 19541, 22061, 24821, 27989, 31421, 35789, 40661, 45029, 49589, 53549, 56909, 62837, 69389, 76709, 84149, 93581, 100253, 107741, 115541, 124109, 131837
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=208 because 2^2+3^2+5^2+7^2+11^2=208
		

Crossrefs

Programs

  • Mathematica
    a = 2; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a, {n, 1, 100}]

A363281 Numbers which are the sum of 4 squares of distinct primes.

Original entry on oeis.org

87, 159, 183, 199, 204, 207, 231, 247, 252, 303, 319, 324, 327, 343, 348, 351, 364, 367, 372, 399, 423, 439, 444, 463, 468, 471, 484, 487, 492, 495, 511, 516, 532, 535, 540, 543, 556, 559, 564, 567, 583, 588, 591, 604, 607, 612, 628, 655, 660, 663, 676, 679, 684, 700, 703, 708
Offset: 1

Views

Author

Zhining Yang, May 25 2023

Keywords

Examples

			87 is a term as 87 = 2^2 + 3^2 + 5^2 + 7^2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@1000,
     Length[PowersRepresentations[#, 4, 2] // Select[AllTrue@PrimeQ] //
         Select[DuplicateFreeQ]] > 0 &]
  • PARI
    upto(n) = {if(n <= 86, return([])); my(pr = primes(primepi(sqrtint(n - 38))), res = List()); forvec(v = vector(4, i, [1, #pr]), c = sum(i = 1, #v, pr[v[i]]^2); if(c <= n, listput(res, c)), 2); listsort(res, 1); res} \\ David A. Corneth, Jul 12 2023
  • Python
    from itertools import combinations as comb
    ps=[p**2 for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]]
    a=[n for n in range(1001) if n in [sum(n) for n in list(comb(ps,4))]]
    print(a)
    
Previous Showing 11-20 of 21 results. Next