cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A133543 Sum of seventh powers of five consecutive primes.

Original entry on oeis.org

20391154, 83139543, 493476029, 1387269643, 4791271547, 22021660685, 49471526279, 143993064739, 337853466881, 606267252541, 1095640496695, 2242839022421, 4636558630107, 7584547192247, 13373440186463
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=20391154 because 2^7+3^7+5^7+7^7+11^7=20391154
		

Crossrefs

Programs

  • Mathematica
    a = 7; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a, {n, 1, 100}]
    Total/@Partition[Prime[Range[20]]^7,5,1] (* Harvey P. Dale, Mar 05 2022 *)

A133540 Sum of fourth powers of five consecutive primes.

Original entry on oeis.org

17764, 46309, 129749, 259445, 536885, 1229525, 2124485, 3915125, 6610565, 9749525, 13921925, 20888885, 31132085, 42152165, 58884485, 79416485, 99924245, 126756965, 160369445, 202960565, 266078165, 341740325, 415341125, 498962405
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=17764 because 2^4+3^4+5^4+7^4+11^4=17764.
		

Crossrefs

Programs

  • Mathematica
    a = 4; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a, {n, 1, 100}]

Formula

a(n) = A133526(n) + A030514(n+4). - Michel Marcus, Nov 09 2013

A133541 Sum of fifth powers of five consecutive primes.

Original entry on oeis.org

181258, 552519, 1972133, 4445107, 10864643, 31214741, 59472599, 127396699, 240776801, 381348901, 590182759, 979749101, 1625329443, 2354069543, 3557186207, 5132070551, 6786946651, 9149078751, 12243523093, 16477457435
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=181258 because 2^5+3^5+5^5+7^5+11^5=181258.
		

Crossrefs

Programs

  • Mathematica
    a = 5; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a, {n, 1, 100}]
    Total/@Partition[Prime[Range[30]]^5,5,1] (* Harvey P. Dale, Dec 02 2017 *)

Formula

a(n) = A133527(n) + A050997(n+4). - Michel Marcus, Nov 09 2013

A133542 Sum of sixth powers of five consecutive primes.

Original entry on oeis.org

1905628, 6732373, 30869213, 77899469, 225817709, 818869469, 1701546341, 4243135181, 8946193541, 15119520701, 25303912709, 46580770157, 86195577389, 132965847509, 217102866629, 334423935221, 463593800381, 664500722261
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=1905628 because 2^6+3^6+5^6+7^6+11^6=1905628.
		

Crossrefs

Programs

  • Mathematica
    a = 6; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a, {n, 1, 100}]
    Total/@(Partition[Prime[Range[30]],5,1]^6)  (* Harvey P. Dale, Mar 13 2011 *)

Formula

a(n) = A133528(n) + A030516(n+4). - Michel Marcus, Nov 09 2013

A306214 Numbers that are the sum of fourth powers of three distinct positive integers in arithmetic progression.

Original entry on oeis.org

98, 353, 707, 962, 1568, 2177, 2658, 3107, 4322, 4737, 5648, 7187, 7793, 7938, 9587, 11312, 12657, 13058, 15392, 15938, 17123, 19362, 20657, 23153, 23603, 25088, 28593, 30963, 31202, 32738, 34832, 35747, 40962, 42528, 45233, 45377, 49712, 49763, 54722, 57153, 57267, 61250, 63938, 67667, 69152
Offset: 1

Views

Author

Antonio Roldán, Jan 29 2019

Keywords

Comments

The remainder of a(n) divided by 16 is less than 5. - Jinyuan Wang, Feb 03 2019

Examples

			353 = 2^4 + 3^4 + 4^4, with 3 - 2 = 4 - 3 = 1;
7187 = 1^4 + 5^4 + 9^4, with 5 - 1 = 9 - 5 = 4.
		

Crossrefs

Programs

  • Maple
    N:= 10^5: # for all terms <= N
    Res:= NULL:
    for a from 1 to floor((N/3)^(1/4)) do
      for d from 1 do
        v:= a^4 + (a+d)^4 + (a+2*d)^4;
        if v > N then break fi;
        Res:= Res, v
      od
    od:
    sort(convert({Res},list)); # Robert Israel, Feb 17 2019
  • PARI
    for(n=1, 70000, k=(n/3)^(1/4); a=2; v=0; while(a<=k&&v==0, d=sqrt(sqrt(2*n+30*a^4)/2-3*a^2); if(d==truncate(d)&&d>=1&&d<=a-1, v=1; print1(n,", ")); a+=1))

A131686 Sum of squares of five consecutive primes.

Original entry on oeis.org

208, 373, 653, 989, 1469, 2189, 2981, 4061, 5381, 6701, 8069, 9917, 12029, 14069, 16709, 19541, 22061, 24821, 27989, 31421, 35789, 40661, 45029, 49589, 53549, 56909, 62837, 69389, 76709, 84149, 93581, 100253, 107741, 115541, 124109, 131837
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=208 because 2^2+3^2+5^2+7^2+11^2=208
		

Crossrefs

Programs

  • Mathematica
    a = 2; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a, {n, 1, 100}]

A176613 Smallest prime p of three consecutive primes such that the sum of their n-th powers is prime, or 0 if such a prime does not exist.

Original entry on oeis.org

2, 5, 3, 23, 0, 11, 0, 5, 0, 23, 3, 137, 0, 5, 3, 89, 0, 71, 0, 17, 0, 23, 0, 23, 3, 131, 3, 419, 0, 31, 0, 859, 0, 31, 0, 127, 0, 11, 0, 359, 0, 31, 0, 347, 0, 509, 0, 137, 0, 193, 0, 769, 0, 23, 0, 17
Offset: 0

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 21 2010

Keywords

Comments

Let p = prime(i), q = prime(i+1), r = prime(i+2).
(*) p^n + q^n + r^n has to be a prime.
When n is even and p > 3, then (*) is composite because primes greater than 3 are either of form 6k-1 or 6k+1 for some k. Hence, squares (or any even power) of such a prime has the form 6k+1. Adding three such even powers will produce a number of the form 6k+3, which is divisible by 3.
When n is even and p = 3, sequence A160773 gives the even n for which 3^n + 5^n + 7^n is prime.

Examples

			5 + 7 + 11 = 23 = prime(9); 3^2 + 5^2 + 7^2 = 83 = prime(23); 23^3 + 29^3 + 31^3 = 66347 = prime(6616).
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local p,q,r;
      if n::even then
        if isprime(3^n+5^n+7^n) then return 3
        else return 0
        fi
      fi;
      p:= 2: q:= 3: r:= 5:
      while not isprime(p^n + q^n + r^n) do
        p:= q; q:= r; r:= nextprime(r)
      od;
      p
    end proc:
    f(0):= 2:
    map(f, [$0..100]);

Extensions

a(0) term added by T. D. Noe, Nov 23 2010
Previous Showing 11-17 of 17 results.