cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 35 results. Next

A218745 a(n) = (42^n - 1)/41.

Original entry on oeis.org

0, 1, 43, 1807, 75895, 3187591, 133878823, 5622910567, 236162243815, 9918814240231, 416590198089703, 17496788319767527, 734865109430236135, 30864334596069917671, 1296302053034936542183, 54444686227467334771687, 2286676821553628060410855, 96040426505252378537255911
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 42 (A009986).

Crossrefs

Programs

Formula

From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-42*x)).
a(n) = 43*a(n-1) - 42*a(n-2).
a(n) = floor(42^n/41). (End)
E.g.f.: exp(x)*(exp(41*x) - 1)/41. - Elmo R. Oliveira, Aug 29 2024

A138635 a(n) =3*a(n-3)-3*a(n-6)+2*a(n-9).

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 2, 1, 3, 3, 2, 6, 5, 5, 11, 10, 11, 21, 21, 22, 42, 43, 43, 85, 86, 85, 171, 171, 170, 342, 341, 341, 683, 682, 683, 1365, 1365, 1366, 2730, 2731, 2731, 5461, 5462, 5461, 10923, 10923, 10922, 21846, 21845, 21845, 43691, 43690, 43691, 87381
Offset: 0

Views

Author

Paul Curtz, May 14 2008

Keywords

Comments

As the recurrence shows, these are three interleaved sequences which obey recurrences b(n)=3*b(n-1)-3*b(n-2)+2*b(n-3), indicating that the b(n) equal their third differences.
These three sequences are A024495, A024494 (or A131708) and A024493 (or A130781).
Their starting "vectors" b(0,1,2) are 0,0,1 and 0,1,2 and 1,1,1, respectively, therefore linearly independent, such that other sequences with the same recursion as b(n) can be written as linear combinations of these.

Crossrefs

Formula

a(18*n) = 21*A133853(n).
G.f.: -x^2*(1+x^2-2*x^3+x^4-x^5+x^6)/((2*x^3-1)*(x^6-x^3+1)). - R. J. Mathar, May 17 2009

Extensions

Edited by R. J. Mathar, May 17 2009

A218727 a(n) = (24^n - 1)/23.

Original entry on oeis.org

0, 1, 25, 601, 14425, 346201, 8308825, 199411801, 4785883225, 114861197401, 2756668737625, 66160049703001, 1587841192872025, 38108188628928601, 914596527094286425, 21950316650262874201, 526807599606308980825, 12643382390551415539801, 303441177373233972955225
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 24 (A009968); q-integers for q=24: diagonal k=1 in triangle A022188.
Partial sums are in A014913. Also, the sequence is related to A014942 by A014942(n) = n*a(n) - Sum_{i=0..n-1} a(i) for n > 0. [Bruno Berselli, Nov 07 2012]

Crossrefs

Programs

Formula

From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-24*x)).
a(n) = floor(24^n/23).
a(n) = 25*a(n-1) - 24*a(n-2). (End)
E.g.f.: exp(x)*(exp(23*x) - 1)/23. - Elmo R. Oliveira, Aug 29 2024

A218729 a(n) = (26^n - 1)/25.

Original entry on oeis.org

0, 1, 27, 703, 18279, 475255, 12356631, 321272407, 8353082583, 217180147159, 5646683826135, 146813779479511, 3817158266467287, 99246114928149463, 2580398988131886039, 67090373691429037015, 1744349715977154962391, 45353092615406029022167, 1179180408000556754576343
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 26 (A009970); q-integers for q=26.

Crossrefs

Programs

Formula

From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-26*x)).
a(n) = floor(26^n/25).
a(n) = 27*a(n-1) - 26*a(n-2). (End)
E.g.f.: exp(x)*(exp(25*x) - 1)/25. - Elmo R. Oliveira, Aug 29 2024

A218730 a(n) = (27^n - 1)/26.

Original entry on oeis.org

0, 1, 28, 757, 20440, 551881, 14900788, 402321277, 10862674480, 293292210961, 7918889695948, 213810021790597, 5772870588346120, 155867505885345241, 4208422658904321508, 113627411790416680717, 3067940118341250379360, 82834383195213760242721, 2236528346270771526553468
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 27 (A009971); q-integers for q=27.

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 28*Self(n-1)-27*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
    
  • Mathematica
    LinearRecurrence[{28, -27}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
  • Maxima
    A218730(n):=(27^n-1)/26$
    makelist(A218730(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
  • PARI
    a(n)=27^n\26
    

Formula

G.f.: x/((1-x)*(1-27*x)). - Vincenzo Librandi, Nov 07 2012
a(n) = floor(27^n/26). - Vincenzo Librandi, Nov 07 2012
a(n) = 28*a(n-1) - 27*a(n-2). - Vincenzo Librandi, Nov 07 2012
E.g.f.: exp(14*x)*sinh(13*x)/13. - Elmo R. Oliveira, Aug 27 2024

A218731 a(n) = (28^n - 1)/27.

Original entry on oeis.org

0, 1, 29, 813, 22765, 637421, 17847789, 499738093, 13992666605, 391794664941, 10970250618349, 307167017313773, 8600676484785645, 240818941573998061, 6742930364071945709, 188802050194014479853, 5286457405432405435885, 148020807352107352204781, 4144582605859005861733869
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 28 (A009972).

Crossrefs

Programs

Formula

From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-28*x)).
a(n) = floor(28^n/27).
a(n) = 29*a(n-1) - 28*a(n-2). (End)
E.g.f.: exp(x)*(exp(27*x) - 1)/27. - Elmo R. Oliveira, Aug 29 2024

A218739 a(n) = (36^n - 1)/35.

Original entry on oeis.org

0, 1, 37, 1333, 47989, 1727605, 62193781, 2238976117, 80603140213, 2901713047669, 104461669716085, 3760620109779061, 135382323952046197, 4873763662273663093, 175455491841851871349, 6316397706306667368565, 227390317427040025268341, 8186051427373440909660277
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 36 (A009980).

Crossrefs

Programs

Formula

From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1 - x)*(1 - 36*x)).
a(n) = 37*a(n-1) - 36*a(n-2).
a(n) = floor(36^n/35). (End)
E.g.f.: exp(x)*(exp(35*x) - 1)/35. - Stefano Spezia, Mar 28 2023

A218741 a(n) = (38^n - 1)/37.

Original entry on oeis.org

0, 1, 39, 1483, 56355, 2141491, 81376659, 3092313043, 117507895635, 4465300034131, 169681401296979, 6447893249285203, 245019943472837715, 9310757851967833171, 353808798374777660499, 13444734338241551098963, 510899904853178941760595, 19414196384420799786902611
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 38 (A009982).

Crossrefs

Programs

Formula

From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-38*x)).
a(n) = 39*a(n-1) - 38*a(n-2).
a(n) = floor(38^n/37). (End)
E.g.f.: exp(x)*(exp(37*x) - 1)/37. - Elmo R. Oliveira, Aug 29 2024

A218742 a(n) = (39^n - 1)/38.

Original entry on oeis.org

0, 1, 40, 1561, 60880, 2374321, 92598520, 3611342281, 140842348960, 5492851609441, 214221212768200, 8354627297959801, 325830464620432240, 12707388120196857361, 495588136687677437080, 19327937330819420046121, 753789555901957381798720, 29397792680176337890150081
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 39 (A009983).

Crossrefs

Programs

Formula

a(n) = floor(39^n/38).
From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-39*x)).
a(n) = 40*a(n-1) - 39*a(n-2). (End)
E.g.f.: exp(20*x)*sinh(19*x)/19. - Elmo R. Oliveira, Aug 29 2024

A218747 a(n) = (44^n - 1)/43.

Original entry on oeis.org

0, 1, 45, 1981, 87165, 3835261, 168751485, 7425065341, 326702875005, 14374926500221, 632496766009725, 27829857704427901, 1224513738994827645, 53878604515772416381, 2370658598693986320765, 104308978342535398113661, 4589595047071557517001085, 201942182071148530748047741
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 44 (A009988).

Crossrefs

Programs

Formula

From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-44*x)).
a(n) = 45*a(n-1) - 44*a(n-2).
a(n) = floor(44^n/43). (End)
E.g.f.: exp(x)*(exp(43*x) - 1)/43. - Elmo R. Oliveira, Aug 29 2024
Previous Showing 21-30 of 35 results. Next